题目链接 \(Click\) \(Here\)
本来想调剂心情没想到写了那么久,还被\(dreagonm\)神仙嘲讽不会传纸条,我真是太弱了\(QAQ\)(原因:最开始写最大费用最大流一直想消圈,最后发现自己完全是\(zz\)了)
这个题是最大费用最大流,避免正环的关键在于只从西向东连边。还有要注意题目中并没有说能任一点开始结束,所以必须是两条\(1->n\)的路线。
路径输出方法真的是学到了,看下面代码吧。还有注意只有\(1->n\)一条边的特判。
#include
using namespace std;
const int N = 400010;
const int M = 4000010;
const int INF = 0x3f3f3f3f;
int cnt = -1, head[N];
struct edge {
int nxt, to, f, w;
}e[M];
void add_edge (int from, int to, int flw, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].f = flw;
e[cnt].w = val;
head[from] = cnt;
}
void add_len (int u, int v, int f, int w) {
add_edge (u, v, f, +w);
add_edge (v, u, 0, -w);
}
int n, m;
map mp;
string s1, s2, str[110];
int inn (int x) {return n * 0 + x;}
int out (int x) {return n * 1 + x;}
queue q;
int vis[N], dis[N], flow[N];
int pre_edge[N], pre_node[N], max_flow, max_cost;
bool spfa (int s, int t) {
memset (vis, 0, sizeof (vis));
memset (dis, -0x3f, sizeof (dis));
memset (flow, 0x3f, sizeof (flow));
dis[s] = 0; vis[s] = true; q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] < dis[u] + e[i].w && e[i].f) {
dis[v] = dis[u] + e[i].w;
flow[v] = min (flow[u], e[i].f);
pre_edge[v] = i;
pre_node[v] = u;
if (!vis[v]) {
vis[v] = true;
q.push (v);
}
}
}
vis[u] = false;
}
return dis[t] != dis[0];
}
void dfs1 (int x) {
cout << str[x - n] << endl;//第一遍dfs正序输出
vis[x] = 1;//不让第二次dfs再找到这个点
for (int i = head[x]; ~i; i = e[i].nxt) {
if (e[i].to <= n && !e[i].f) {
dfs1 (e[i].to + n);
break;
}//第一次dfs只找一条路径,找到就break
}
}
void dfs2 (int x) {
vis[x - n] = 1;
for (int i = head[x]; ~i; i = e[i].nxt) {
if (e[i].to <= n && !e[i].f && !vis[e[i].to + n]) {
dfs2 (e[i].to + n);
}//不走第一次路径走过的点
}
cout << str[x - n] << endl;//第二次dfs倒序输出
}//vis[n]在第一次dfs已经设为1,不会输出第二次
int main () {
memset (head, -1, sizeof (head));
cin >> n >> m;
int s = n * 2 + 1;
int t = n * 2 + 2;
for (int i = 1; i <= n; ++i) {
cin >> str[i]; mp[str[i]] = i;
add_len (inn (i), out (i), 1, 1);
}
add_len (inn (1), out (1), 1, 0);
add_len (inn (n), out (n), 1, 0);
add_len (s, inn (1), 2, 0);
add_len (out (n), t, 2, 0);
bool have = false;
for (int i = 1; i <= m; ++i) {
cin >> s1 >> s2;
if (mp[s1] > mp[s2]) swap (s1, s2);
have |= (mp[s1] == 1 && mp[s2] == n);
add_len (out (mp[s1]), inn (mp[s2]), 1, 0);
}
max_flow = 0, max_cost = 0;
while (spfa (s, t)) {
max_flow += flow[t];
max_cost += dis[t] * flow[t];
int u = t;
while (u != s) {
e[pre_edge[u] ^ 0].f -= flow[t];
e[pre_edge[u] ^ 1].f += flow[t];
u = pre_node[u];
}
}
if (max_flow == 1 && have) {
cout << max_cost << endl;
cout << str[1] << endl << str[n] << endl << str[1] << endl;
} else if (max_flow == 2){
memset (vis, 0, sizeof (vis));
cout << max_cost << endl;
dfs1 (n + 1); dfs2 (n + 1);
} else puts ("No Solution!");
}