#include
using namespace std;
typedef int lint;
typedef long long LL;
const lint maxn = 5011;
const lint maxm = 4e7;
struct EDGE {
int from, to, next, cost, cap; // 如果需要修改 cost为LL
};
namespace MFMC {
const static int maxn = 5011;
const static int maxm = 4e7;
EDGE edge[maxm];
int tot, he[maxn], n;
void Init(int _n) {
tot = 0;
n = _n + 1;
memset(he, -1, n * sizeof(int));
}
void AddDi(int u, int v, int cap,int cost) { // 如果需要修改 cost为LL
edge[tot] = EDGE{u, v, he[u], cost, cap};
he[u] = tot++;
}
void AddDi_mfmc(int u, int v, int cap,int cost) { // 如果需要修改 cost为LL
AddDi(u, v, cap,cost);
AddDi(v, u, 0,-cost);
}
//O(VE)
//record_e[i]是fa[i]->i的边的编号
template
void spfa(int s, DT dist[], int rec[]) {
queue q;
static bool inq[maxn];
memset(dist, 0x3f, n * sizeof(DT));
memset(inq, 0, n * sizeof(bool));
memset(rec, -1, n * sizeof(int));
q.push(s);
dist[s] = 0;
while (!q.empty()) {
int u = q.front();
q.pop();
inq[u] = 0;
for (int e = he[u]; ~e; e = edge[e].next) {
if (0 == edge[e].cap)
continue;
int v = edge[e].to;
if (dist[v] > dist[u] + edge[e].cost) {
dist[v] = dist[u] + edge[e].cost;
rec[v] = e;
if (!inq[v]) {
q.push(v);
inq[v] = 1;
}
}
}
}
}
template
void dijkstra_pq(int s, DT dist[], int rec[]) {
priority_queue > q;//-dist, vertex
memset(dist, 0x3f, n * sizeof(DT));
memset(rec, -1, n * sizeof(int));
dist[s] = 0;
q.push(make_pair(0, s));
while (!q.empty()) {
s = q.top().second;
DT c = -q.top().first;
q.pop();
if (c != dist[s]) continue;
for (int e = he[s]; ~e; e = edge[e].next) {
if (0 == edge[e].cap) continue;
int v = edge[e].to;
if (dist[v] > c + edge[e].cost) {
dist[v] = c + edge[e].cost;
rec[v] = e;
q.push(make_pair(-dist[v], v));
}
}
}
}
//Need dijkstra_GRAPH_EDGES_PQ
//O(FE log(E)),F is the maximum flow
template
void mfmc(int s, int t, FT &maxflow, CT &mincost) {
CT inf;
memset(&inf, 0x3f, sizeof(CT));
static CT dist[maxn];
static int rec_e[maxn];
maxflow = mincost = 0;
CT realdist = 0; //real distance from s to t
bool first = true;
while (1) {
if (first) {
spfa( s, dist, rec_e);
first = false;
} else {
dijkstra_pq( s, dist, rec_e);
}
if (inf == dist[t])
break;
FT minF = numeric_limits::max();
for (int e = rec_e[t]; ~e; e = rec_e[edge[e].from])
minF = min(minF, (FT) edge[e].cap);
maxflow += minF;
realdist += dist[t];
mincost += minF * realdist;
for (int e = rec_e[t]; ~e; e = rec_e[edge[e].from]) {
edge[e].cap -= minF;
edge[e ^ 1].cap += minF;
}
for (int e = 0; e < tot; ++e) {
EDGE &ed = edge[e];
ed.cost += dist[ed.from] - dist[ed.to];
}
}
}
};
int a[maxn];
int main(){
int TT,n,k;
scanf("%d",&TT);
while(TT--)
{
scanf("%d%d",&n,&k);
lint s=0, S=1,t=2*n+2;
MFMC::Init(t + 10);
MFMC::AddDi_mfmc( s,S,k,0);
for(int i=1;i<=n;i++) {
scanf("%d",&a[i]);
MFMC::AddDi_mfmc( S,2*i,1,0);
MFMC::AddDi_mfmc( 2*i+1,t,1,0);
MFMC::AddDi_mfmc( 2*i,2*i+1,1,-a[i]);
}
for (int i = 1; i <= n; ++i) {
int last = 0x3f3f3f3f;
for (int j = i + 1; j <= n; ++j) {
bool first = true;
if (a[j] >= a[i] && a[j] < last) {
MFMC::AddDi_mfmc(2 * i + 1, 2 * j, 1,0);
if(first){
MFMC::AddDi_mfmc( 2 * i , 2 * j,0x3f3f3f3f,0);
first = false;
}
last = a[j];
}
}
}
LL cost = 0;
LL flow = 0;
MFMC::mfmc(s, t,flow,cost );
//g.mincost( s,t,flow,cost );
//printf("%d\n",-ans);
cout << -cost << endl;
}
return 0;
}