- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 网工必备知识点(Essential Knowledge Points for Internet Workers)
Linux运维老纪
无所畏惧走进计算机网络世界网络服务器运维开发容器云计算
网工必备知识点网络工程师是信息技术领域中不可或缺的职业,负责设计、实施和管理网络系统,确保企业内外部的通信安全、流畅。要成为一名合格的网络工程师,掌握基础知识是必不可少的。一、交换机是一种网络设备,通过学习MAC地址来决定数据包的传输路径,是现代网络中实现高效数据交换的关键设备。二、路由器是一种网络设备,用于在不同网络间路由数据包,实现网络间的通信。它工作在网络层,通过路由表寻址转发数据包。三、防
- 招聘和面试
后端go
本篇内容是根据2019年4月份#82Hiringandjobinterviews音频录制内容的整理与翻译小组成员MatRyer、AshleyMcNamara、JohnnyBoursiquot和CarmenAndoh讨论了受聘、雇用和工作面试的过程。如果人是团队中最重要的部分,我们如何选择与谁一起工作?流程是怎样的?怎样才能更好呢?过程中为符合中文惯用表达有适当删改,版权归原作者所有.MatRyer
- 模型轻量化
莱茶荼菜
人工智能学习
影响神经网络推理速度主要有4个因素:FLOPs、MAC、计算并行度、硬件平台架构与特性(算力、GPU内存带宽)模型压缩工业界主流的模型压缩方法有:知识蒸馏(KnowledgeDistillation,KD)轻量化模型架构(也叫紧凑的模型设计)、剪枝(Pruning)、量化(Quantization)。模型剪枝(ModelPruning):模型剪枝通过删除冗余的连接或参数来减小模型的大小。这可以通过
- 详解Redis中lua脚本和事务
优人ovo
redislua数据库
Inlearningknowledge,oneshouldbegoodatthinking,thinking,andthinkingagain.—-AlbertEinstein引言Lua脚本的原子性和事务的ACID特性想必大家都很熟悉,本篇文章将从性能表现和原理帮助我们快速理解他们基本概念1.RedisLua脚本从2.6版本起,Redis开始支持Lua脚本。开发者能够将一系列Redis命令封装于一
- 一文读懂DeepSeek蒸馏技术,AI进阶的秘密武器
老黄浅谈质量
人工智能大数据
一文读懂DeepSeek蒸馏技术,AI进阶的秘密武器在AI领域蓬勃发展的当下,模型的性能与效率成为了研究者们关注的焦点。DeepSeek作为其中的佼佼者,其蒸馏技术为提升模型表现开辟了新路径。今天,就让我们深入探究DeepSeek蒸馏技术的奥秘。一、什么是蒸馏技术蒸馏技术,英文名为KnowledgeDistillation,简称KD,最早是由GeoffreyHinton、OriolVinyals和
- 谈谈你了解的python_GitHub - hutianli/python_interview_question: 关于python的面试题
weixin_39639686
谈谈你了解的python
Python基础1、文件操作1.1、有一个jsonline格式的文件file.txt大小约为10K1.2、补充缺失的代码?2、模块与包2.1输入日期,判断这一天是这一年的第几天?2.2打乱一个排好序的list对象alist?3、数据类型3.1、现有字典d={‘a’:24,‘g’:52,‘i’:12,‘k’:33}请按value值进行3.2、字典推导式?3.3、请反转字符串“aStr”?3.4、将字
- 稻盛和夫如何描述能力
爱学习的大牛123
闲谈能力公式
1.能力的三要素稻盛和夫认为,能力由以下三个核心要素组成:知识(Knowledge):掌握的专业知识、技术技能和行业经验。技能(Skill):将知识应用于实际工作的能力,包括解决问题的能力、执行力和创新能力。态度(Attitude):对待工作的心态和价值观,包括责任感、热情、毅力和团队精神。2.能力的公式稻盛和夫提出了一个著名的公式来描述能力的本质:能力=知识×技能×态度```-**知识**和**
- Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)
lightwindy
LeetCodeLeetCode
Sortedbyfrequencyofproblemsthatappearinrealinterviews.Lastupdated:October2,2017Google(214)534DesignTinyURL388LongestAbsoluteFilePath683KEmptySlots340LongestSubstringwithAtMostKDistinctCharacters681Nex
- 基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习
Philo`
医学图像分割论文阅读深度学习人工智能论文阅读图像处理pytorch机器学习
DomainKnowledgePoweredDeepLearningforBreastCancerDiagnosisBasedonContrast-EnhancedUltrasoundVideos期刊分析摘要引言相关工作乳腺癌中的CAD基于乳房CEU的CAD方法整体框架原始C3D骨干领域知识指导的时间注意模块(DKG-TMA)域知识引导的通道注意模块数据集和实验乳腺-对比增强超声数据集实验设置实验
- springboot中使用AOP手动处理事务回滚
yzhSWJ
springbootjava后端
我有一个del的方法,当移除某个对象的时候,我需要相应的移除n个数据,这种情况下,除非其中某一个抛出了异常,事务才会回滚,但是我会在处理第n个数据的情况下,返回false,也需要让这个事务回滚,我该怎么处理呢@Override@TransactionalpublicResultdel(Longid){AiKnowledgeBaseknowledgeBase=getById(id);if(knowl
- DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning论文解读
tangjunjun-owen
paper解读DeepSeekR1DeepSeekzero大语言模型
文章目录前言一、摘要二、引言三、贡献1.贡献后训练:基础模型的大规模强化学习蒸馏:较小的模型也可以很强大2.评估结果概览reasoningtasksknowledgeohters四、方法1.Overview2.DeepSeek-R1-Zero:ReinforcementLearningontheBaseModelReinforcementLearningAlgorithm(GRPO重点)Rewar
- 知识库升级新思路:用生成式AI打造智能知识助手
在当今信息爆炸的时代,企业和组织面临着海量数据的处理和管理挑战。知识库管理系统(KnowledgeBaseManagementSystem,KBMS)作为一种有效的信息管理工具,帮助企业存储、组织和检索知识。然而,传统的知识库系统往往依赖于人工输入和维护,效率低下且难以应对快速变化的信息需求。生成式AI,特别是像ChatGPT这样的语言模型,为知识库管理系统带来了新的可能性。一、知识库管理系统的现
- 深度解析 DeepSeek 的蒸馏技术
海持Alvin
AI技术应用AI技术解决方案与产业研报deepseek人工智能大模型ai
转自微信公众号,https://mp.weixin.qq.com/s/pvx4nYeBcfmMVRBCdvP9Yw如有侵权,请联系删除。DeepSeek蒸馏技术概述1.1蒸馏技术定义与原理图片模型蒸馏(KnowledgeDistillation)是一种将大型复杂模型(教师模型)的知识迁移到小型高效模型(学生模型)的技术。其核心目标是在保持模型性能的同时,显著降低模型的计算复杂度和存储需求,使其更适
- LangGraph入门教程
xnuscd
python
LangGraph教程:在LangChain中集成知识图谱目录简介前置条件环境配置安装必要的库创建知识图谱集成LangChain与知识图谱定义工具构建Agent类自定义模板和输出解析运行示例扩展与优化常见问题与故障排除总结简介LangGraph是一个结合LangChain与知识图谱(KnowledgeGraph)的应用,旨在通过结构化的知识库增强语言模型的理解和响应能力。通过将知识图谱与LangC
- 《量化绿皮书》Chapter 2 Brain Teasers 脑筋急转弯
量仔搞靓化
量化绿皮书金融
《APracticalGuideToQuantitativeFinanceInterviews》,被称为量化绿皮书,是经典的量化求职刷题书籍之一,包含以下七章:Chapter1GeneralPrinciples通用技巧Chapter2BrainTeasers脑筋急转弯Chapter3CalculusandLinearAlgebra微积分与线性代数Chapter4ProbabilityTheory概
- java英语面试自我介绍_java面试英语自我介绍范文
小二妮子
java英语面试自我介绍
不论是高校还是进入职场,都免不了要经历自我介绍的环节,那么大家知道Java程序员是怎么用英文自我介绍吗?下面学习啦小编为大家带来java面试英语自我介绍范文,供大家参考!java面试英语自我介绍范文篇1Goodmorning!Itisreallymyhonortohavethisopportunityforainterview,Ihopeicanmakeagoodperformancetoday.
- Unifying Large Language Models and Knowledge Graphs: A Roadmap综述笔记-入门-知识图谱KG-大模型LLM
笨cc
KG读论文语言模型知识图谱笔记
论文信息标题:UnifyingLargeLanguageModelsandKnowledgeGraphs:ARoadmap作者:ShiruiPan摘要LLMs,例如chatGPT和GPT4,由于其涌现能力和泛化性,对自然语言理解和人工智能领域产生了新的冲击。然而,LLMs是一个黑箱模型,往往缺乏捕获和获得事实知识。相反,知识图谱,例如维基百科等,是有结构模型。存储着丰富的事实知识。KGs可以通过提
- KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS
UnknownBody
LLMDaily语言模型人工智能
本文是LLM系列文章,针对《KRAIL:AKnowledge-DrivenFrameworkforBaseHumanReliabilityAnalysisIntegratingIDHEASandLargeLanguageModels》的翻译。KRAIL:集成IDHEAS和大型语言模型的基础人员可靠性分析的知识驱动框架摘要1引言2文献综述3方法4实验结果5结论和未来工作摘要人的可靠性分析(HRA)对
- 核心HTML5/CSS3基础面试题
AgostoDu
html5css3前端
HTML5/CSS3高频经典面试题汇总了2023年各互联网大厂以及中小型创业公司基础阶段的最新高频面试题HTML/HTML5标签Interviewquestions1、说说你对HTML语义化的理解?HTML5新增了哪些语义化标签?(字节、百度,阿里,腾讯、京东,小米)2、DOCTYPE是干嘛的,都有哪些属性(字节)3、meta标签是干什么的,都有什么属性和作用(字节,58,商汤)4、你了解哪些HT
- DeepSeek R1技术报告关键解析(5/10):知识蒸馏:如何让小模型也能具备强推理能力?
董董灿是个攻城狮
人工智能计算机视觉CNN
1.什么是知识蒸馏?知识蒸馏(KnowledgeDistillation)是一种让小模型从大模型学习的技术,类似于一位资深老师将自己的知识浓缩后,传授给学生。大模型通常计算量大、推理速度慢,而小模型虽然计算资源消耗更少,但推理能力往往不如大模型。通过知识蒸馏,小模型可以继承大模型的推理能力,同时保持较低的计算成本。在DeepSeek-R1训练过程中,研究人员通过知识蒸馏,让较小的模型也能具备较强的
- 知识蒸馏教程 Knowledge Distillation Tutorial
Qiming_v
Distillation蒸馏
来自于:KnowledgeDistillationTutorial将大模型蒸馏为小模型,可以节省计算资源,加快推理过程,更高效的运行。使用CIFAR-10数据集importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvision.transformsastransformsimporttorchvision.datasetsa
- 浅谈知识蒸馏技术
eso1983
机器学习人工智能深度学习
最近爆火的DeepSeek技术,将知识蒸馏技术运用推到我们面前。今天就简单介绍一下知识蒸馏技术并附上python示例代码。知识蒸馏(KnowledgeDistillation)是一种模型压缩技术,它的核心思想是将一个大型的、复杂的教师模型(teachermodel)的知识迁移到一个小型的、简单的学生模型(studentmodel)中,从而在保持模型性能的前提下,减少模型的参数数量和计算复杂度。以下
- 大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?
空间机器人
LLM语言模型学习笔记语言模型人工智能自然语言处理
大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?随着大模型在各个领域的广泛应用,我们面临的一个核心问题是——如何让这些庞大的模型在硬件资源有限的环境下运行?这就需要我们运用一系列的技术来“压缩”这些模型,使其在保持精度的同时,能够适应不同的硬件设备。那么,LLM压缩到底是如何实现的呢?让我们从几个关键技术开始讲解:剪枝(Pruning)、知识蒸馏(KnowledgeDistillation)
- 30秒知识快学插件指南
瞿旺晟
30秒知识快学插件指南30_seconds_of_knowledgeGoogleChromeExtensionthatletsyougainnewdeveloperskills,everytimeyouopenaNewTab.项目地址:https://gitcode.com/gh_mirrors/30/30_seconds_of_knowledge项目介绍30秒知识快学是一款专为开发者设计的Goo
- TCP 三次握手四次挥手
壮Sir不壮
tcp/ip网络协议网络
目录TCP三次握手1.SYN(Synchronize:同步)2.SYN-ACK(Synchronize+Acknowledge:同步+确认)3.ACK(Acknowledge:确认)为什么是三次而不是两次或四次?三次握手的作用TCP四次挥手第一次挥手:客户端发送FIN第二次挥手:服务器发送ACK确认第三次挥手:服务器发送FIN第四次挥手:客户端发送ACK确认为什么需要四次挥手?TCP三次握手TCP
- (25-4-01)基于本地知识库的自动问答系统(LangChain+ChatGLM+ModelScope/Huggingface部署): 构建和部署对话系统(1)
码农三叔
《NLP算法实战》训练RAG多模态)langchainpython自然语言处理语言模型bert文心一言Huggingface
13.3.4构建和部署对话系统文件jina_serving.py定义了一个名为KnowledgeBasedChatLLM的类,用于初始化模型配置、加载文件、检索问题答案等操作。其中,LangChain是文件jina_serving.py中的一个重要组件,它通过将自然语言处理技术与信息检索技术相结合,实现了以下功能:模型管理与加载:通过init_model和reinit_model函数,实现了模型的
- 聊聊AI中的“蒸馏”技术
自由鬼
行业发展IT应用探讨产品分析对比人工智能深度学习机器学习
一、什么是“蒸馏”技术“蒸馏”技术实际上是指知识蒸馏(KnowledgeDistillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。1.知识蒸馏的过程教师模型(TeacherModel)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生
- 什么是知识蒸馏技术?
deepdata_cn
垂域模型机器学习人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是一种模型压缩和加速技术,旨在将大型模型(通常称为教师模型)所学到的知识迁移到小型模型(通常称为学生模型)中,从而让小型模型在减少计算资源消耗和推理时间的同时,尽可能达到接近大型模型的性能。具有很好的成本效益,在实际应用中有助于降低计算资源需求和部署成本。一、基本原理1.模仿学习:知识蒸馏的核心思想是让学生模型模仿教师模型的行为。教师模型通常是
- 大模型蒸馏与大模型微调技术有啥差别?
kcarly
大模型知识乱炖杂谈大模型蒸馏大模型微调大模型AI
大模型蒸馏与大模型微调是当前人工智能领域中两种重要的技术手段,它们在模型优化、性能提升和资源利用方面各有特点。以下将从定义、技术原理、应用场景及优缺点等方面对这两种技术进行深入对比。一、定义与基本概念大模型蒸馏(KnowledgeDistillation)蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。蒸
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号