- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 【CUDA编程】Dim3
量化投资和人工智能
CUDA昇腾CUDA人工智能深度学习c++云计算
dim3是CUDA编程中用于定义线程块(Block)和网格(Grid)维度的三维向量结构体,本质是包含三个无符号整数成员(x、y、z)的轻量级容器。以下是其核心特性与用法详解:一、核心定义与结构structdim3{unsignedintx;//第一维度(宽度)unsignedinty;//第二维度(高度)unsignedintz;//第三维度(深度)};默认值规则:未显式赋值的维度默认为1。示例
- 【CUDA编程】OptionalCUDAGuard详解
量化投资和人工智能
CUDA大模型人工智能机器学习CUDA云计算pythonc++
OptionalCUDAGuard是PyTorch的CUDA工具库(c10/cuda)中用于安全管理GPU设备上下文的RAII(ResourceAcquisitionIsInitialization)类。其核心作用是在特定代码块中临时切换GPU设备,并在退出作用域时自动恢复原设备状态,尤其适用于设备可能为“未指定”(nullopt)的场景。以下从作用、原理、用法和典型场景详细解析:⚙️一、核心作用
- 【CUDA编程】 C10_CUDA_CHECK 宏详细解析
量化投资和人工智能
CUDACUDA人工智能云计算大模型
以下是对C10_CUDA_CHECK宏的详细解析,结合CUDA错误处理机制和PyTorch框架设计进行说明:一、宏定义结构解析#defineC10_CUDA_CHECK(EXPR)\do{\constcudaError_t__err=EXPR;\c10::cuda::c10_cuda_check_implementation(\static_cast(__err),\__FILE__,\__fun
- 第四篇:Python 高级-高性能计算加速秘籍
程序员勇哥
Python全套教程python开发语言
第四篇:Python高级-高性能计算加速秘籍在当今数据量与计算需求日益增长的环境下,提升Python程序的计算性能显得尤为关键。本篇将深入探讨向量化计算的深度优化以及如何借助CUDA编程与GPU加速来显著提升Python计算效率。一、向量化计算的深度优化(一)利用Numba实现复杂算法的高效向量化Numba简介Numba是一个用于Python的即时编译器(JIT),它能够将Python函数转换为机
- Python中使用CUDA/GPU的方式比较
东北豆子哥
CUDAHPC/MPIpythonCUDA
Python中使用CUDA/GPU的方式比较在Python中利用GPU加速计算有多种方式,以下是主要的几种方法及其比较:1.CUDA原生开发方式:使用NVIDIA提供的CUDAC/C++API开发内核通过PyCUDA或Numba等工具在Python中调用特点:最底层,性能最优开发复杂度高需要熟悉CUDA编程模型示例库:PyCUDANumbaCUDA2.通用GPU计算框架2.1CUDA加速库方式:使
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- 被 CUDA 性能问题困扰?从全局内存到共享内存,并行归约优化全解析!
讳疾忌医丶
动手学习CUDA编程c++CUDA开发语言
你是不是也觉得GPU编程听起来很酷,但一上手就头大?别慌,今天我带你玩转CUDA里一个既基础又硬核的东西——并行归约。啥是归约?简单说,就是把一堆数加起来(或者其他累积操作),但在GPU上,这可不是简单的for循环,而是能让性能起飞的优化手法。作为一个写了好几年CUDA的老司机,我有个独家观点:并行归约是CUDA编程的灵魂,搞懂它,你就摸到了GPU优化的门道。这篇文章不整虚的,我会用大白话带你从最
- 《GPU高性能编程CUDA实战》中文版电子书
翁佳忱
《GPU高性能编程CUDA实战》中文版电子书【下载地址】GPU高性能编程CUDA实战中文版电子书探索GPU高性能编程的奥秘,掌握CUDA实战技巧!本资源提供了《GPU高性能编程CUDA实战》中文电子书,深入解析GPU编程基础与CUDA架构,助您从理论到实践全面提升。无论您是编程新手还是资深开发者,本书都能为您提供清晰的指导与丰富的实战案例。立即下载,开启您的CUDA编程之旅,解锁GPU计算的无限潜
- Cuda Instruction Replay
ZhiqianXia
CUDA技术笔记cuda
在CUDA编程中,指令重放(InstructionReplay)是GPU执行指令时因特定原因导致指令需重复发射或重新执行的现象,通常会影响性能。以下是其关键点:指令重放的原因分支分歧(DivergentBranches)当同一线程束(Warp)中的线程执行不同分支(如if-else)时,GPU需串行化处理每个分支路径。同一指令可能被多次发射(重放),导致执行时间增加。内存访问延迟全局内存访问未命中
- CUDA编程高阶优化:如何突破GPU内存带宽瓶颈的6种实战策略
学术猿之吻
GPU高校人工智能边缘计算人工智能transformer深度学习gpu算力aiAI编程
在GPU计算领域,内存带宽瓶颈是制约性能提升的"隐形杀手"。本文面向具备CUDA基础的研究者,从寄存器、共享内存到TensorCore,系统剖析6项突破性优化策略,助你充分释放GPU算力。一、全局内存访问优化:对齐与合并原则1.1合并访问的本质GPU全局内存以线程束(Warp)为单位执行合并事务。当32个线程访问连续且对齐的128字节内存块时,总线利用率可达100%。以下代码演示如何实现合并
- CUDA编程优化:如何实现矩阵计算的100倍加速
学术猿之吻
GPU高校人工智能矩阵人工智能线性代数深度学习量子计算算法gpu算力
一、突破性能瓶颈的核心路径矩阵计算的百倍加速需要打通"内存带宽→计算密度→指令吞吐"三重关卡。根据NVIDIAAmpere架构白皮书,A100GPU的理论计算峰值(FP32)为19.5TFLOPS,但原生CUDA代码往往只能达到5-8%的理论值。通过系统化优化策略,我们成功将1024×1024矩阵乘法从初始的212ms优化至2.1ms,实现101倍加速(测试平台:NVIDIARTX3090)。二、
- C++开发者的逆袭之路:大部份的高薪岗位都在招 CUDA 人才,你还不行动?
讳疾忌医丶
动手学习CUDA编程c++开发语言
为什么你必须学会CUDA编程?想象一下,你手头有个计算任务,普通CPU跑得慢得像乌龟爬,而GPU却能像火箭一样把性能拉满——这就是高性能计算(HPC)的魅力!在这个数据爆炸的时代,无论是AI训练、科学仿真还是金融建模,HPC都成了不可或缺的利器。而NVIDIA的CUDA平台,正是这场革命的核心,把GPU从画图的“小能手”变成了并行计算的“大杀器”。作为一名C++专家,我可以负责任地说:学会CUDA
- CUDA 编程相关的开源库
byxdaz
CUDAcuda
CUDA编程相关的开源库非常丰富,涵盖了高性能计算、深度学习、图像处理、线性代数、优化算法等多个领域。1.通用GPU计算库CUDAToolkit(NVIDIA官方):包含CUDA运行时库、编译器(nvcc)、调试工具(cuda-gdb、Nsight)、数学库(如cuBLAS、cuFFT)等。CUDAToolkit-FreeToolsandTraining|NVIDIADeveloperThrust
- GPU编程实战指南04:CUDA编程示例,使用共享内存优化性能
anda0109
CUDA并行编程gpu算力AI编程ai
在CUDA编程中,共享内存(SharedMemory)比全局内存(GlobalMemory)效率高的原因主要与CUDA的硬件架构和内存访问特性密切相关。以下是详细分析:1.CUDA内存层次结构CUDA设备(GPU)具有多层次的内存架构,主要包括以下几种:寄存器(Registers):每个线程私有的高速存储单元,速度最快但容量有限。共享内存(SharedMemory):由同一个线程块(Block)中
- gather算子的CUDA编程和算子测试
谨慎付费(看不懂试读博客不要订阅)
高性能计算CUDA
知乎介绍参考添加链接描述完整测试框架参考本人仓库添加链接描述gather算子的onnx定义参考添加链接描述,该算子的主要变换参考下图:这里我们不妨以input=[A,dimsize,D],indices=[B,C],axis=1举例子,此时对应的output形状是[A,B,C,D],并且根据gather算子定义,我们知道output[i,j,k,s]=input[i,indices[j,k],s]
- Python调用CUDA
源代码分析
python开发语言
CUDA常用语法和函数CUDA(ComputeUnifiedDeviceArchitecture)是NVIDIA提供的一个并行计算平台和编程模型,允许开发者使用NVIDIAGPU进行高性能计算。以下是一些CUDA编程中的常用语法和函数:核函数(KernelFunctions):使用__global__修饰符定义,这种函数可以从主机(CPU)调用并在设备(GPU)上并行执行。调用格式:kernel>
- NVIDIA GTC 开发者社区Watch Party资料汇总
扫地的小何尚
NVIDIAGPUlinuxAI算法
NVIDIAGTC开发者社区WatchParty资料汇总以下是所有涉及到的工具中文解读汇总,希望可以帮到各位:1.CUDA编程模型开发者指南和最新功能解析专栏2.NVIDIAWarp:高性能GPU模拟与图形计算的Python框架3.NVIDIAcuDF:GPU加速的数据处理库详解4.NVIDIAcuML:GPU加速的机器学习库详解5.NVIDIAcuFFT详解:从入门到高级应用6.NVIDIAcu
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- cuda编程入门——并行归约(五)
我不会打代码啊啊
cuda编程算法c++gpu算力
CUDA编程入门—并行归约(数组求和为例)在并行计算中,归约(Reduction)是一种将多个数据通过特定操作(如求和、求最大值等)合并为单一结果的并行算法。其核心目标是通过并行化加速大规模数据集的聚合计算。关键概念操作类型:可结合且可交换的操作(如加法、乘法、最大值、最小值、逻辑与/或等)适合并行归约。若操作不可结合(如减法或除法),需特殊处理或无法直接并行化。并行实现方式:树形结构归约:将数据
- cuda编程入门——并行性与异构性概念
我不会打代码啊啊
cuda编程gpu算力c++
CUDA编程入门一基于cuda的异构并行计算并行性一、并行性的概念与分类概念并行性旨在通过同时处理多个任务或数据元素来提高计算速度和效率。它可以在不同的层次上实现,包括指令级并行、数据级并行和任务级并行等。分类指令级并行(Instruction-LevelParallelism,ILP):在处理器的指令执行层面,通过硬件技术(如流水线、超标量技术等)让多条指令在不同阶段同时执行,从而提高处理器的指
- CUDA检测失败的解决方案
HackDashX
Python
CUDA检测失败的解决方案在使用Python进行CUDA编程时,有时候会遇到"CUDAdetectionfailed"的错误信息。这个错误通常表示CUDA驱动程序无法正确地检测到CUDA设备。在本文中,我将为您提供一些解决这个问题的方法。以下是一些可能的原因和相应的解决方案:CUDA驱动程序未正确安装:首先,请确保您已正确安装了与您的CUDA版本相匹配的CUDA驱动程序。您可以从NVIDIA官方网
- CUDA环境配置
波小澜
CUDAcudaubuntu环境配置
本文介绍Ubuntu14.04下CUDA环境的安装过程标签高性能计算(HPC)并行化加速学习CUDA最好的去处还是NVIDIA官网,上面许多文档写的都相当不错,比如CUDA编程指南、如何使用cuRand生成随机数等。环境配置博主主要在Linux下进行CUDA程序的开发,包括Ubuntu14.04、CentOS6等以在Ubuntu下安装CUDA为例:首先,在命令行中执行nvidia-smi指令,查看
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理