hdu1848 Fibonacci again and again

Fibonacci again and again

Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input
1 1 1
1 4 1
0 0 0

Sample Output
Fibo
Nacci

题意:博弈论问题。按照题目所述方式取石子,最先取完的人取胜。这是一个能够很方便使用SG函数的例子。 先打表获取sg值, 然后异或判断结果。

#include 
#include 
using namespace std;
#define MAX 1005
int sg[MAX], f[MAX];
void GetSG(int n)
{
    int i, j, tmp[MAX];
    memset(sg, 0, sizeof(sg));
    for(i = 1; i <= n; i++)
    {
        memset(tmp, 0, sizeof(tmp));
        for(j = 1; f[j] <= i; j++)
            tmp[sg[i-f[j]]] = 1;
        for(j = 0; j <= n; j++)
        {
            if(tmp[j] == 0)
            {
                  sg[i] = j;
                  break;
            }

        }
    }
}
int main()
{
    int i;
    f[0] = 0;
    f[1] = 1;
    f[2] = 2;
    for(i = 3; f[i-1] < MAX; i++)
        f[i] = f[i-1] + f[i-2];
    GetSG(MAX);
    int m, n, p;
    while(cin >> m >> n >> p)
    {
        if(m==0 && n==0 && p==0)
            break;
        if((sg[m]^sg[n]^sg[p]) == 0)
            cout << "Nacci" << endl;
        else
            cout << "Fibo" << endl;
    }

    return 0;
}

注意一点:sg值异或计算时 要用括号括起来。

你可能感兴趣的:(算法题解)