- 【python与机器学习3】感知机和门电路:与门,或门,非门等
奔跑的犀牛先生
机器学习python
目录1电子和程序里的与门,非门,或门,与非门,或非门,异或门1.1基础电路1.2所有的电路情况1.3电路的符号1.4各种电路对应的实际电路图2各种具体的电路2.1与门(andgate)2.1.1定义:A&B/AandB2.1.2andgate的写法2.1.3逻辑展开2.1.4电路图形2.1.5python里代码2.2或门(orgate)2.2.1定义2.2.2写法2.2.3逻辑展开2.2.4电路图
- python与机器学习2,激活函数
奔跑的犀牛先生
机器学习人工智能
目录1什么是激活函数?activationfunction1.1阈值1.2激活函数a(x),包含偏置值θ1.3激活函数a(x),包含偏置值b2激活函数1:单位阶跃函数2.1函数形式2.2函数图形2.3函数特点2.4代码实现这个单位阶跃函数3激活函数2sigmoid函数3.1函数形式3.2函数图形3.3函数特点3.3.1是一个连续函数,且是一个渐变的曲线3.3.2是连续区间的[0,1],可以天然等价
- 周四 2020-05-28 23:40 - 05:30 阴 11h40m
么得感情的日更机器
2020-5-28:高锟,光纤之父,壮年工程,老年高校教书育人。一时间记录0:005:30休息-睡觉5:305:305:503-日常-学习强国0:205:506:002-英语2-阅读0:106:006:372-技能-时间管理-日总结0:376:377:18饭早10:417:187:382-技能-时间管理-日总结0:207:389:292-编程工具-python与机器学习1:519:2910:131
- 【Python与机器学习 5-4】集成学习 Ensemble learning
zxfhahaha
机器学习python机器学习
集成学习(Ensemblelearning)通过构建并结合多个学习器来完成学习任务好的集成,个体学习器应“好而不同”:个体学习器要有一定的“准确性”,并且还要有“多样性”。集成学习分类集成学习可以分成同质集成和异质集成两大类。同质集成集成中包含同种类型的学习器->“基学习器”(baseleaner)异质集成集成中包含不同类型的学习器->“组件学习器”(componentleaner)集成策略首先来
- python与机器学习1,机器学习的一些基础知识概述(完善ing)
奔跑的犀牛先生
python机器学习
目录1AI,ML,DL,NN等等概念分类1.1人工智能、机器学习、深度学习、神经网络之间的关系:1.2人工智能的发展2ML机器学习的分类:SL,USL,RL2.1机器学习的分类2.2具体的应用举例2.3数据分类3关于阈值θ和偏移量b的由来4不同的激活函数5关于回归6关于分类7关于误差和梯度下降8最小二乘法修改θ9和矩阵计算,矩阵内积点乘的关系10深度学习11参考书籍1AI,ML,DL,NN等等概念
- Python与机器学习库Scikit-learn实战
心梓知识
python机器学习scikit-learn
Python是一种高级编程语言,拥有丰富的库和工具,使其成为机器学习领域中最受欢迎的语言之一。Scikit-learn是机器学习的一个开源Python库,它提供了许多算法和工具,可以帮助我们进行数据挖掘和机器学习。在本文中,我们将介绍Python和Scikit-learn的一些基础知识,并展示如何使用这两种工具进行机器学习实战。一、Python基础Python是一种解释性、跨平台的高级编程语言,支
- 《Python与机器学习实战》——第一章
皮皮大
第一章主要是个导论,在里面介绍了个简单的利用机器学习预测房价的栗子:数据预处理导入相关的模块和包,主要是numpy、pandas和matplotlib.pyplot。获取到两列关键的数据:size和price将size标准化处理标准化处理数学公式:做出size和price的散点图#导入相关的库importnumpyasnpimportpandasaspdimportmatplotlib.pyplo
- Python与机器学习:入门与基础
天天进步2015
机器学习pythonpython机器学习开发语言
机器学习是人工智能领域中一项重要的技术,而Python作为一种简单易用且功能强大的编程语言,成为了机器学习领域中的热门工具。本文将介绍Python与机器学习的基础知识,包括Python的优势、常用的机器学习库以及基本的机器学习算法。一、Python的优势:Python作为一种解释型语言,具有许多优势,使其成为机器学习领域的首选工具之一。1.简单易用:Python语法简洁清晰,易于学习和理解。即使是
- Python为什么成为人工智能的首选语言
王荣胜z
前言之前一直都是在学习Python与机器学习,深度学习。但是究竟为什么在众多的编程语言中选择Python作为人工智能的首选语言呢我一直不得而知,今天就来以我的理解来梳理下吧。首先在我不再赘述Python的前世今生,只是深入的说一下Python与人工智能的关系。一、从人工智能说起首先人工智能话题的热度再度升起应该是开始于一个引发全民狂欢的科技新闻:2016年到2017年,谷歌开发的围棋AI程序Alp
- 价值7000元的AI培训资料,拿走不谢
Nstream
这是我去年杭州培训的AI资料,价值7000元,包括tensorflow,keras实战源码,深度学习经典pdf书籍,知识图谱,规则引擎等,还有超全ppt,直接上图,给你惊喜。123关注我,私信发给你,或者搜索微信公众号“python与机器学习那点事”,后台回复”培训“,获取网盘连接
- python与机器学习
Bill_cc74
入门一、理念梳理python学习,边学边练,库准备学会找资源找数据:githubkaggle天池机器学习的数学学习算法的数学公式推导及应用二、何谓机器学习1、数据收集与预处理问题:如何收集数据(爬虫入门)数据预处理需要做哪些工作?2、特征选择与模型构建:问题定义及特征选取3、评估与预测:定性还是定量?如何改进?
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- python 多分类模型优化_【Python与机器学习】:利用Keras进行多类分类
weixin_39998462
python多分类模型优化
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多。这里我们利用Keras机器学习框架中的ANN(artificialneuralnetwork)来解决多分类问题。这里我们采用的例子是著名的UCIMachineLearningRepository中的鸢尾花数据集(irisflowerdataset)。1.编码输出便签多类分类问题与二类分类问题类似,需要将类别变量(catego
- python ai 项目_汇总!AI开发者必备的Python与机器学习开源项目推荐
庄比
pythonai项目
AIRX团队整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,可以广泛应用于其他领域。Scikit-learnScikit-le
- Github上Top20 Python与机器学习开源项目推荐
AIRX三次方
AIRX自然语言处理深度学习机器学习tensorflowcaffe
以下内容由公众号:AIRX社区(国内领先的AI、AR、VR技术学习与交流平台)整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,
- python和机械结合_《Python与机器学习》笔记(8)
weixin_39802020
python和机械结合
无监督学习1.基于聚类的“图像分割”实例编写图像分割图像分割:利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。图像分割技术已在实际生活中得到广泛的应用。例如:在机车检验领域,可以应用到轮毂裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医
- python自然语言处理评论_python与机器学习入门(10)NLP自然语言处理大量餐馆评论...
weixin_39640221
python自然语言处理评论
1.NLP是什么自然语言处理用于对文本的分类用于对中英文的互相翻译用于打字时候的自动纠错垃圾邮件过滤......1.1本次的目标这次学习是1000个英文的对一餐馆的评价,以及手动分类的结果,看一下是正面还是负面的评价。用NLP算法自动辨别评价的好坏,当在拿到一个评价时,就可以自动进行好坏的分类了。这次要做的就是对评论就行分类,完成以后可以拓展到文本文章英文报道等进行应用。1.2观察数据打开评论的t
- python与机器学习降维:PCA实现高维数据可视化和NMF人脸数据特征提取
Cachel wood
python机器学习和数据挖掘pythonsklearn机器学习
PCA实现高维数据可视化#建立工程,导入sklearn相关工具包importmatplotlib.pyplotaspltfromsklearn.decompositionimportPCAfromsklearn.datasetsimportload_iris#加载数据并进行降维data=load_iris()y=data.targetX=data.datapca=PC
- 朴素贝叶斯和SVM
king52113141314
机器学习入门概率论机器学习分类
朴素贝叶斯决策:详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解_nebulaf91的博客-CSDN博客_最大后验估计如何简单理解贝叶斯决策理论(BayesDecisionTheory)?-知乎参数估计|Python与机器学习如何通俗地理解概率论中的「极大似然估计法」?-知乎SVM:机器学习实战教程(八):支持向量机原理篇之手撕线性SVM支持向量机:OutliersTh
- 卷积神经网络识别车辆(自建+迁移学习)
Asionm
人工智能神经网络深度学习人工智能
卷积神经网络识别车辆(迁移模型)此为本人Python与机器学习第一学期大作业技术文档,在此分享给大家!源代码见个人的资源处,已经上传到CSDN卷积神经网络识别车辆卷积神经网络识别车辆(迁移模型)模型介绍resnet50自建模型程序介绍编程详细模型讨论模型训练参数的选择loss值随epoch次数的变化曲线resnet50自建立模型参数改变的讨论模型准确率模型采用的提高准确率的技术模型介绍对于模型的选
- python与机器学习
AI小丸子
Pythonpython机器学习人工智能
机器学习数据挖掘、CV、NLP、语音识别、统计学习、模式识别套路:1.数据收集处理;2.特征选择与模型构建;3.评估与预测站点:kagglegithubpython库科学计算库numpypandas线性回归例子:工资x1、年龄x2、贷款额度y关系关系:;预测一个值,这个值有区间。工资和年龄是特征;贷款额度是目标或者标签;拟合一个面分割的过程;y=a+b*x1+c*x2;a偏置参数对结果影响小;bc
- Python与机器学习之优化算法
为了更好的明天
Python与数据分析python机器学习
Python与机器学习之优化算法回顾圣经,在监督学习中优化算法是关键的步骤——分析模型并得到最优模型,才是最终的目的。基于梯度下降的学习对于一个简单的机器学习算法,每一个样例包含了一个(x,y)对,其中输入x和一个数值输出y。我们考虑损失函数l(y^,y),它描述了预测值y^和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数fw(x)的到的预测结果。我们的目标是寻找这样的
- 【CSDN软件工程师能力认证学习精选】如何入门Python与机器学习
高校俱乐部
CSDN软件工程师能力认证C5机器学习python
CSDN软件工程师能力认证(以下简称C系列认证)是由中国软件开发者网CSDN制定并推出的一个能力认证标准。C系列认证历经近一年的实际线下调研、考察、迭代、测试,并梳理出软件工程师开发过程中所需的各项技术技能,结合企业招聘需求和人才应聘痛点,基于公开、透明、公正的原则,甑别人才时确保真实业务场景、全部上机实操、所有过程留痕、存档不可篡改。我们每天将都会精选CSDN站内技术文章供大家学习,帮助大家系统
- python与机器学习(七)下——torchvision预训练模型测试真实图像分类
zhaociTang
python与机器学习python计算机视觉pytorch机器学习
任务要求:利用torchvision中的预训练CNN模型来对真实的图像进行分类,预测每张图片的top5类别。数据:real_image,class_index.json导入:importtorchfromtorchvisionimportmodels,datasets,transformsfromtorch.utils.dataimportDataLoader,DatasetfromPILimpo
- python与机器学习(七)上——PyTorch搭建LeNet模型进行MNIST分类
zhaociTang
python与机器学习pythonpytorch神经网络机器学习
任务要求:利用PyTorch框架搭建一个LeNet模型,并针对MNIST数据集进行训练和测试。数据集:MNIST导入:importtorchfromtorchimportnn,optimfromtorch.autogradimportVariablefromtorch.nnimportfunctionalasFfromtorchvisionimportdatasets,transformsfrom
- python与机器学习(六)——支持向量机(SVM) && 多层感知机(MLP)
zhaociTang
python与机器学习pythonsvmmlp支持向量机机器学习
在这次实验中,我们将尝试提取基本的图像特征并利用支持向量机或多层感知机算法对提取的特征进行图像分类。导入:importnumpyasnpimportmatplotlibfromscipy.ndimageimportuniform_filter数据加载:#读取提供的cifar10-mini数据集,data=np.load('cifar10-mini.npz')X_train=data['X_trai
- python与机器学习(五)——决策树
zhaociTang
python与机器学习python机器学习决策树
决策树(DecisionTree)通过sklearn库的决策树模型对iris数据进行多分类,并进行结果评估导入:fromsklearn.treeimportDecisionTreeClassifierfromsklearn.datasetsimportload_irisfromsklearnimportdatasetsfromsklearn.datasetsimportload_breast_ca
- python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC
zhaociTang
python与机器学习python机器学习数据分析
读取data.csv文件数据完成:1.分别计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数量2.分别计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值(F1-score)3.分别计算精确率、召回率、F1-score的宏平均(MacroAverage)并且计算准确率(Accuracy)4.绘制ROC曲线并计算曲线下面积AUC(可使用sklearn
- python与机器学习(二)Numpy / Pandas /矩阵相乘速度对比
zhaociTang
python与机器学习python机器学习pandasnumpy
NumPy(NumericalPython)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的官方文档:https://numpy.org/doc/stable/reference/index.htmlPandas是一个强大的分析结构化数据的工具集,它的使用基础是NumPy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提
- python与机器学习入门
zzhetao
Python实例
1、Anaconda的安装与使用。2、第一个机器学习样例:(1.3.1获取与处理数据)#导入需要用到的库importnumpyasnpimportmatplotlib.pyplotasplt#定义存储输入数据(x)和目标数据(y)的数组x,y=[],[]#遍历数据集,变量sample对应的正是一个个样本forsampleinopen("D:/1/_Data/prices.txt","r"):#“/
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&