【洛谷】P1040 加分二叉树

【洛谷】P1040 加分二叉树

【洛谷】P1040 加分二叉树

题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

 

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

 

输出格式:

 

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

 

输入输出样例

输入样例#1:
5
5 7 1 2 10
输出样例#1:
145
3 1 2 4 5

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define INF 0x3f3f3f
#define N 10005
using namespace std;

int a[33],f[33][33],root[33][33];
int n;

void print_f(int x,int y)
{
    if(root[x][y]!=0)   cout<" ";
    if(root[x][root[x][y]-1]!=0)    print_f(x,root[x][y]-1);
    if(root[root[x][y]+1][y]!=0)    print_f(root[x][y]+1,y);
}

int main()
{
    cin>>n;
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++)
            f[i][j]=1;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        f[i][i]=a[i];
        root[i][i]=i;
    }
    for(int cnt=1;cnt<=n;cnt++)
    {
        for(int i=1;i<=n;i++)
        {
            int j=i+cnt;
            if(j<=n)
            {
                int temp=-INF;
                for(int k=i;k<=j;k++)
                {
                    if(temp<(f[i][k-1]*f[k+1][j]+a[k]))
                    {
                        temp=f[i][k-1]*f[k+1][j]+a[k];
                        root[i][j]=k;
                    }
                }
                f[i][j]=temp;
            }
        }
    }
    cout<1][n]<<endl;
    print_f(1,n);
    return 0;
}

 

posted on 2017-04-06 20:06 asuml 阅读( ...) 评论( ...) 编辑 收藏

你可能感兴趣的:(【洛谷】P1040 加分二叉树)