- 免费像素画绘制软件 | Pixelorama v1.0.3
dntktop
软件运维windows
Pixelorama是一款开源像素艺术多工具软件,旨在为用户提供一个强大且易于使用的平台来创作各种像素艺术作品,包括精灵、瓷砖和动画。这款软件以其丰富的工具箱、动画支持、像素完美模式、剪裁遮罩、预制及可导入的调色板等特色功能,满足了像素艺术家们的各种需求。用户可以享受到动态工具映射、洋葱皮效果、帧标签、播放动画时绘制等高级功能,以及非破坏性的、完全可定制的图层效果,如轮廓、渐变映射、阴影和调色板化
- 昇思MindSpore AI框架MindFormers实践3:ChatGLM3-6B对一段文字进行提取
skywalk8163
人工智能项目实践人工智能mindspore
MindSpore和MindFormers安装参见:昇思AI框架实践1:安装MindSpoe和MindFormers_miniconda安装mindspore-CSDN博客使用了MindSpore2.2和MindFormers1.0支持的模型:KeyError:"modelmustbeinodict_keys(['gpt2','gpt2_lora','gpt2_xl','gpt2_xl_lora'
- 一文看懂物联网通信技术
SEEKSEE AIoT
物联网
无线通信传输是实现万物互联的重要环节,其在传输速度及成本方面具有显著优势。今天我们将一起聊聊物联网无线通信的几种常见类型,了解其优势及应用。你好!物联网的无线通信技术种类繁多,从通信距离上可分为短距离(近距离)无线通信技术和低功耗广域网(远距离)通信技术。近距离通信技术包括Wi-Fi、蓝牙、ZigBee等,远距离通信技术以2G/3G/4G/5G、LPWAN(NB-IoT、eMTC、LoRa等)为代
- 三相电表智能抄表是什么?
BZWL_BZWL
自动化运维人工智能数据分析大数据
一、三相电表智能抄表简述三相电表智能抄表操作系统是电力领域科学化管理不可或缺的一部分,它利用先进的物联网,完成了对三相电表数据库的自动采集、传送、解决与分析,大大提升了电力经营效率和服务水平。二、原理与优势1.原理:智能电表内嵌感应器,可精准测量三相电电压、电流和功率等数据。这些信息根据无线通讯模块(如GPRS、NB-IoT等)传送到云服务器,完成智能抄表。与此同时,电度表还能实时检测电网情况,防
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-unsloth(让微调起飞)-单机单卡-V100(十七)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用unsloth去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。使用unsloth能够使模型的微调速度提高2-5倍。在处理大规模数据或对时间要求较高的场景下,这可以大大节省微调所需的时间,提高开发效率。其次,可减少80%的内存使用。这对于资源有限的环境或者需要同时运行多个微调任务的
- 大模型微调 - 基于预训练大语言模型的对话生成任务 训练代码
西笑生
大模型大模型自然语言处理微调
大模型微调-基于预训练大语言模型的对话生成任务训练代码flyfish模型扮演堂吉诃德这个角色,回答关于自我介绍的问题importtorchfromdatasetsimportDatasetfrommodelscopeimportAutoTokenizer,AutoModelForCausalLMfrompeftimportLoraConfig,TaskType,get_peft_modelfrom
- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 大模型基础知识-LoRA与QLoRA
破壁者-燕
深度学习
介绍LoRA与QLoRA1.LoRA(Low-RankAdaptation)LoRA是一种用于大规模语言模型(LLM)的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。核心思想:低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需
- 通感算一体化:(一)初步阐明定义和挑战
炸膛坦客
无线感知信息与通信自动驾驶智慧城市
常用的无线感知波无线电波频率高于300MHz的电磁波为微波波段,频率不同、波长不同、传输距离也各不相同。这类微波波长短,绕射能力差,往往用作视距(LoS)或者超视距中继通信。下面将分别介绍微波波段的几种代表性技术:WiFi、mmWave、UWB、Bluetooth、RFID、(NFC、ZigBee、LoRa、NB-IoT)这几种常见技术。前五种见于无线感知领域,后四种包括现在的5G、LTE等多用于
- 深度学习速通系列:LoRA微调是什么
Ven%
深度学习速通系列人工智能深度学习python机器学习nlp
LoRA微调(Low-RankAdaptation)是一种用于大型预训练语言模型(LLM)的高效微调技术。它的核心思想是在不改变预训练模型权重的前提下,通过在模型的Transformer层中引入可训练的低秩矩阵来实现模型的微调。这种方法可以显著减少训练参数的数量,从而降低对计算资源的需求。LoRA微调的原理:LoRA微调方法建议冻结预训练模型的权重,并在每个Transformer块中注入可训练的低
- 大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
剑圣土豆
算法面试大模型学习自然语言处理transformer算法nlp自然语言处理面试深度学习人工智能
大模型:位置编码有哪些?介绍LoRA与QLoRARAG和微调的区别是什么?哪些因素会导致LLM的偏见?什么是思维链(CoT)提示?Tokenizer的实现方法及原理解释一下大模型的涌现能力?解释langchainAgent的概念langchain有哪些替代方案?RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?RAG和微调的区别是什么?有了解过什么是稀疏微调
- [Lora][微调] Qwen-VL/Qwen-VL-chat微调问题
翔迅AI
python
@[Lora][微调]Qwen-VL/Qwen-VL-chat微调问题关于Qwen-VL在lora过程中出现的问题总结。模型预训练错误一“erfinv_cuda”notimplementedfor‘BFloat16’RuntimeError:"erfinv_cuda"notimplementedfor'BFloat16'参考github中issue253给出的意见,修改Qwen-VL-Chat/v
- 2023-07-12
大法师的输出
模型:xxmix9realistic_v30LoRA:,,,室内、起居室、咖啡杯等构建环境氛围效果图1(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescrip
- 【神经网络系列(高级)】神经网络Grokking现象的电路效率公式——揭秘学习飞跃的秘密【通俗理解】
神经美学_茂森
神经网络人工智能算法神经网络学习人工智能
【通俗理解】神经网络Grokking现象的电路效率公式论文地址:https://arxiv.org/abs/2309.02390参考链接:[1]https://x.com/VikrantVarma_/status/1699823229307699305[2]https://pair.withgoogle.com/explorables/grokking/关键词提炼#Grokking现象#神经网络#
- 记录-小程序720°VR(跳转H5页面实现)
久违的小技巧
小程序小程序vrjavascript
全景浏览提前准备1拍照支架/照片合成软件(KolorAutopanoGiga4.0)或者全景相机2pannellum(pannellum是一个轻量级、免费和开源的Web全景查看器。它使用HTML5、CSS3、JavaScript和WebGL构建,没有插件。)3H5页面引入pannellum.js/css文件,swiper/jquery文件(因为需要在全景图底部显示可切换图片,与dom操作/ajax
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- flux 文生图大模型 自有数据集 lora微调训练案例
loong_XL
深度学习fluxaigcsd文生图多模态
参考:https://github.com/ostris/ai-toolkit目前Flux出现了3个训练工具SimpleTunerhttps://github.com/bghira/SimpleTunerX-LABS的https://github.com/XLabs-AI/x-fluxai-toolkithttps://github.com/ostris/ai-toolkit待支持:https:/
- 【WPF动画】
TIF星空
WPF分享wpf经验分享c#
关于WPF中System.Windows.Media.Animation命名空间下常用动画类的简要介绍、使用方法和适用场景的表格使用场景解释:示例代码1示例代码2:使用`Storyboard`组合多个动画代码解释应用场景动画类描述使用示例适用场景DoubleAnimation用于为double类型的属性(如Width,Height等)创建动画。xml控件大小的变化、透明度的渐变等。ColorAni
- Flutter Theme Tailor Annotation使用指南:自定义主题注解
明似水
flutterflutterandroid
FlutterThemeTailorAnnotation使用指南:自定义主题注解简介theme_tailor_annotation是一个Dart注解包,它与ThemeTailor代码生成器配合使用,用于帮助开发者自定义Flutter应用的主题。ThemeTailor允许开发者通过注解来定义主题相关的属性,然后自动生成相应的主题代码。主要功能注解定义:使用注解来定义主题的属性和值。代码生成:自动生成
- Flora女王的感恩日记
Flora女王
2019.07.31Flora女王的感恩日记感恩我的宇宙哥哥每天都把我照顾的那么好,谢谢,谢谢,谢谢!感恩今天去医院做身体检查医院里的人不是很多我可以顺利完成,谢谢,谢谢,谢谢!感恩今天去医院拿很久以前的一份报告工作人员为我去翻查记录,谢谢,谢谢,谢谢!感恩我的钱宝宝服务于我,现在我可以细细的感受自己要买的每一件物品是否是自己真是所需,谢谢,谢谢,谢谢!感恩今天与公子欢分享我的奇迹时感受到了她的那
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-ms-swift-单机单卡-V100(十二)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用ms-swift去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量
- 2023-07-02
大法师的输出
大模型:breakdomainrealistic_R2333LoRA:,效果图(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescription,Profess
- 学习 Rust:I/O Ring
老父亲的能量嘎嘣脆
rust学习后端开发语言职场和发展
Areyoudisappointedwithselect,poll,epollorAIO?TryoutthebestI/OpromiseintheLinuxlandscape.您对select、poll、epoll或AIO感到失望吗?尝试Linux环境中最佳的I/O承诺。LinuxhasarichhistoryinmanagingI/Ooperations.Somemechanisms,likes
- 2022-2023学年英语周报九年级第10期答案及试题(初三第十期)
gaokaos
阅读理解:CastleRock,Colorado,isintheFrontRange进入查看:2022-2023学年英语周报九年级第10期答案及试题(初三第十期)CastleRock,Colorado,isintheFrontRangebetweenDenverandColoradoSprings.Thetownwasfirstsettledinthe1870sandnamedfortherock
- 数据科学生命周期的7个步骤–在业务中应用AI
听忆.
人工智能
数据科学生命周期的7个步骤–在业务中应用AI1.问题定义(BusinessUnderstanding)2.数据收集(DataCollection)3.数据准备(DataPreparation)4.数据探索(ExploratoryDataAnalysis,EDA)5.模型构建(Modeling)6.模型评估(Evaluation)7.模型部署与维护(DeploymentandMaintenance)
- NB-IoT,LoRA,WIFI,蓝牙,Zigbee,MQTT,CoAP之间的关系
hanchufeng2020
物联网
概览(从上往下)应用层协议:MQTT、CoAP...网络层、传输协议:IPv4、IPv6、TCP、6LoWPAN、RPL物理层、数据链路层协议:近距离通信:Dash、NFC、Bluetooth、RFID、IRdA...远距离蜂窝通信:GSM(2G)、WCDMA(3G)、LTE(3.9G)、TD-LTE(4G)、NB-IOT...远距离非蜂窝通信:ZigBee、WiFi、Z-Wave、wHART、L
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- 欺诈文本分类微调(六):Lora单卡训练
沉下心来学鲁班
微调分类人工智能机器学习语言模型微调
1.引言前面欺诈文本分类微调(四):构造训练/测试数据集已经构造出了数据集,更之前的欺诈文本分类微调(一):基座模型选型选好了基座模型,这篇文章将基于构造出的数据集和选定的模型进行欺诈文本分类的微调训练。关于微调方法,我们将使用比较普遍的Lora:在模型中注入低秩矩阵的方式。关于训练器,使用transformers库中提供的Trainer类。2.数据准备2.1加载数据导入要使用的基础包。impor
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla