最近一直在准备毕设,需要用到imu预积分的知识,大概把vins的代码都看完了,vins中预积分的部分使用的是欧拉积分,而大多数文献中给出的推导过程都是基于欧拉积分,本着造轮子的心态,花了一周时间自己推导了一下中值积分的公式,现在分享给大家,由于本人刚刚接触VIO时间仅半年时间,推导难免有错误,欢迎大家指正。
本人微信号:gch86869
欢迎交流
完整版公式推导pdf下载:
下载地址
提取码:8uro
imu预积分一般是基于李代数的扰动模型,也就是so3的右扰动模型(左扰动和右扰动一样,只是施加扰动的位置不同)
下面给出so3常用公式以及右扰动模型的数学表达,但是省略推导过程,如果对基础李代数公式推导感兴趣,建议阅读高博的slam14讲或者机器人学中的状态估计。
手打了几个公式好辛苦啊,基本上imu预积分就是这个公式之间变来变去,基本上优先使用第一个公式,第五个公式不到万不得已不要用,因为求so3的右雅可比在计算机中还是蛮消耗计算量的,而且还需要引入额外的李代数的库,其他的操作公式1-4都可以直接用Eigen手打。
我把imu预积分的公式推导分为三个部分,第一部分为imu预积分噪声的传播方程推导,第二部分为imu预积分残差对状态量的雅可比,第三部分为逆深度重投影残差对状态量(pose,landmark)的推导。
同时在推导雅可比时,还参照邱笑晨博士基于欧拉积分预积分推导里对雅可比的分类,0类,线性类,复杂类;让整个文件显得稍微有条理一点。
由于篇幅有限,这里只放出部分推导,其余的推导过程见附件。
欧拉积分:
角速度测量值(世界坐标系):
ϖ ~ = ϖ k − b g , k + η g , k \tilde \varpi = {\varpi _k} - {b_{g,k}} + {\eta _{g,k}} ϖ~=ϖk−bg,k+ηg,k
加速度测量值(世界坐标系):
a ~ = Δ R i , k ⋅ ( a k − b a , k + η a , k ) \tilde a = \Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} + {\eta _{a,k}}} \right) a~=ΔRi,k⋅(ak−ba,k+ηa,k)
旋转预积分量:
Δ R i , k + 1 = Δ R i , k ⋅ E x p ( [ Δ t 2 ⋅ ( ϖ k − b g , k + η g , k ) ] ∧ ) \Delta {R_{i,k + 1}} = \Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\frac{{\Delta t}}{2} \cdot \left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right)} \right]}^ \wedge }} \right) ΔRi,k+1=ΔRi,k⋅Exp([2Δt⋅(ϖk−bg,k+ηg,k)]∧)
速度预积分量:
Δ V i , k + 1 = Δ R i , k ( a k − b g , i + η a , k ) Δ t + Δ V i , k \Delta {V_{i,k + 1}} = \Delta {R_{i,k}}\left( {{a_k} - {b_{g,i}} + {\eta _{a,k}}} \right)\Delta t + \Delta {V_{i,k}} ΔVi,k+1=ΔRi,k(ak−bg,i+ηa,k)Δt+ΔVi,k
位置(平移)预积分量:
Δ P i , k + 1 = Δ P i , k + Δ V i , k ⋅ Δ t + 1 2 Δ R i , k ⋅ ( a k − b g , i + η a , k ) Δ t 2 \Delta {P_{i,k + 1}} = \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{1}{2}\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{g,i}} + {\eta _{a,k}}} \right)\Delta {t^2} ΔPi,k+1=ΔPi,k+ΔVi,k⋅Δt+21ΔRi,k⋅(ak−bg,i+ηa,k)Δt2
中值积分:
角速度测量值(世界坐标系):
ϖ ~ = 1 2 [ ( ϖ k − b g , k + η g , k ) + ( ϖ k + 1 − b g , k + 1 + η g , k + 1 ) ] \tilde \varpi = \frac{1}{2}\left[ {\left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right) + \left( {{\varpi _{k + 1}} - {b_{g,k + 1}} + {\eta _{g,k + 1}}} \right)} \right] ϖ~=21[(ϖk−bg,k+ηg,k)+(ϖk+1−bg,k+1+ηg,k+1)]
加速度测量值(世界坐标系):
a ~ = 1 2 [ Δ R i , k ⋅ ( a k − b a , k + η a , k ) + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k + 1 + η a , k + 1 ) ] \tilde a = \frac{1}{2}\left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} + {\eta _{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {{a_{k + 1}} - {b_{a,k + 1}} + {\eta _{a,k + 1}}} \right)} \right] a~=21[ΔRi,k⋅(ak−ba,k+ηa,k)+ΔRi,k+1⋅(ak+1−ba,k+1+ηa,k+1)]
旋转预积分量:
Δ R i , k + 1 = Δ R i , k ⋅ E x p ( [ Δ t 2 ⋅ ( ( ϖ k − b g , k + η g , k ) + ( ϖ k + 1 − b g , k + η g , k + 1 ) ) ] ∧ ) E x p ( [ Δ ϕ i , k + 1 ] ∧ ) = E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ Δ t 2 ⋅ ( ( ϖ k − b g , k + η g , k ) + ( ϖ k + 1 − b g , k + η g , k + 1 ) ) ] ∧ ) \begin{array}{c} \Delta {R_{i,k + 1}} = \Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\frac{{\Delta t}}{2} \cdot \left( {\left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right) + \left( {{\varpi _{k + 1}} - {b_{g,k}} + {\eta _{g,k + 1}}} \right)} \right)} \right]}^\land}} \right)\\ Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) = Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\frac{{\Delta t}}{2} \cdot \left( {\left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right) + \left( {{\varpi _{k + 1}} - {b_{g,k}} + {\eta _{g,k + 1}}} \right)} \right)} \right]}^\land}} \right) \end{array} ΔRi,k+1=ΔRi,k⋅Exp([2Δt⋅((ϖk−bg,k+ηg,k)+(ϖk+1−bg,k+ηg,k+1))]∧)Exp([Δϕi,k+1]∧)=Exp([Δϕi,k]∧)⋅Exp([2Δt⋅((ϖk−bg,k+ηg,k)+(ϖk+1−bg,k+ηg,k+1))]∧)
速度预积分量:
Δ V i , k + 1 = Δ V i , k + Δ t 2 ⋅ [ Δ R i , k ⋅ ( a k − b a , k + η a , k ) + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k + η a , k + 1 ) ] \Delta {V_{i,k + 1}} = \Delta {V_{i,k}} + \frac{{\Delta t}}{2} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} + {\eta _{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {{a_{k + 1}} - {b_{a,k}} + {\eta _{a,k + 1}}} \right)} \right] ΔVi,k+1=ΔVi,k+2Δt⋅[ΔRi,k⋅(ak−ba,k+ηa,k)+ΔRi,k+1⋅(ak+1−ba,k+ηa,k+1)]
位置(平移)预积分量:
Δ P i , k + 1 = Δ P i , k + 1 + Δ V i , k ⋅ Δ t + Δ t 2 4 [ Δ R i , k ⋅ ( a k − b a , k + η a , k ) + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k + η a , k + 1 ) ] \Delta {P_{i,k + 1}} = \Delta {P_{i,k + 1}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4}\left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} + {\eta _{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {{a_{k + 1}} - {b_{a,k}} + {\eta _{a,k + 1}}} \right)} \right] ΔPi,k+1=ΔPi,k+1+ΔVi,k⋅Δt+4Δt2[ΔRi,k⋅(ak−ba,k+ηa,k)+ΔRi,k+1⋅(ak+1−ba,k+ηa,k+1)]
陀螺仪bias:
b g , k + 1 = b g , k + η g , k ⋅ Δ t {b_{g,k + 1}} = {b_{g,k}} + {\eta _{g,k}} \cdot \Delta t bg,k+1=bg,k+ηg,k⋅Δt
加速度计bias:
b a , k + 1 = b a , k + η a , k ⋅ Δ t {b_{a,k + 1}} = {b_{a,k}} + {\eta _{a,k}} \cdot \Delta t ba,k+1=ba,k+ηa,k⋅Δt
根据一阶泰勒展开得到噪声传播方程:
[ δ ϕ i , k + 1 δ V i , k + 1 δ P i , k + 1 δ b g , k + 1 δ b a , k + 1 ] = F ⋅ [ δ ϕ i , k δ V i , k δ P i , k δ b g , k δ b a , k ] + G ⋅ [ η g , k η a , k η g , k + 1 η a , k + 1 η b w , k η b w , k ] \left[ {\begin{array}{cc} {\delta {\phi _{i,k + 1}}}\\ {\delta {V_{i,k + 1}}}\\ {\delta {P_{i,k + 1}}}\\ {\delta {b_{g,k + 1}}}\\ {\delta {b_{a,k + 1}}} \end{array}} \right] = F \cdot \left[ {\begin{array}{cc} {\delta {\phi _{i,k}}}\\ {\delta {V_{i,k}}}\\ {\delta {P_{i,k}}}\\ {\delta {b_{g,k}}}\\ {\delta {b_{a,k}}} \end{array}} \right] + G \cdot \left[ {\begin{array}{cc} {{\eta _{g,k}}}\\ {{\eta _{a,k}}}\\ {{\eta _{g,k + 1}}}\\ {{\eta _{a,k + 1}}}\\ {{\eta _{{b_w},k}}}\\ {{\eta _{{b_w},k}}} \end{array}} \right] ⎣⎢⎢⎢⎢⎡δϕi,k+1δVi,k+1δPi,k+1δbg,k+1δba,k+1⎦⎥⎥⎥⎥⎤=F⋅⎣⎢⎢⎢⎢⎡δϕi,kδVi,kδPi,kδbg,kδba,k⎦⎥⎥⎥⎥⎤+G⋅⎣⎢⎢⎢⎢⎢⎢⎡ηg,kηa,kηg,k+1ηa,k+1ηbw,kηbw,k⎦⎥⎥⎥⎥⎥⎥⎤
其中:
F = [ ∂ δ ϕ i , k + 1 ∂ δ ϕ i , k ∂ δ ϕ i , k + 1 ∂ δ Δ V i , k ∂ δ ϕ i , k + 1 ∂ δ P i , k + 1 ∂ δ ϕ i , k + 1 ∂ δ b g , k ∂ δ ϕ i , k + 1 ∂ δ b a , k ∂ δ V i , k + 1 ∂ δ ϕ i , k ∂ δ V i , k + 1 ∂ δ V i , k ∂ δ V i , k + 1 ∂ δ P i , k + 1 ∂ δ V i , k + 1 ∂ δ b g , k ∂ δ V i , k + 1 ∂ δ b a , k ∂ δ P i , k + 1 ∂ δ ϕ i , k ∂ δ P i , k + 1 ∂ δ V i , k ∂ δ P i , k + 1 ∂ δ P i , k + 1 ∂ δ P i , k + 1 ∂ δ b g , k ∂ δ P i , k + 1 ∂ δ b a , k ∂ δ b g , k + 1 ∂ δ ϕ i , k ∂ δ b g , k + 1 ∂ δ V i , k ∂ δ b g , k + 1 ∂ δ P i , k + 1 ∂ δ b g , k + 1 ∂ δ b g , k ∂ δ b g , k + 1 ∂ δ b a , k ∂ δ b a , k + 1 ∂ δ ϕ i , k ∂ δ b a , k + 1 ∂ δ V i , k ∂ δ b a , k + 1 ∂ δ P i , k + 1 ∂ δ b a , k + 1 ∂ δ b g , k ∂ δ b a , k + 1 ∂ δ b a , k ] F = \left[ {\begin{array}{cc} {\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {\phi _{i,k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta \Delta {V_{i,k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {P_{i,k + 1}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {b_{g,k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {b_{a,k}}}}}\\ {\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial \delta {\phi _{i,k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial \delta {V_{i,k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial \delta {P_{i,k + 1}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial \delta {b_{g,k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial \delta {b_{a,k}}}}}\\ {\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {\phi _{i,k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {V_{i,k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {P_{i,k + 1}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {b_{g,k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {b_{a,k}}}}}\\ {\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial \delta {\phi _{i,k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial \delta {V_{i,k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial \delta {P_{i,k + 1}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial \delta {b_{g,k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial \delta {b_{a,k}}}}}\\ {\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial \delta {\phi _{i,k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial \delta {V_{i,k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial \delta {P_{i,k + 1}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial \delta {b_{g,k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial \delta {b_{a,k}}}}} \end{array}} \right] F=⎣⎢⎢⎢⎢⎢⎢⎢⎡∂δϕi,k∂δϕi,k+1∂δϕi,k∂δVi,k+1∂δϕi,k∂δPi,k+1∂δϕi,k∂δbg,k+1∂δϕi,k∂δba,k+1∂δΔVi,k∂δϕi,k+1∂δVi,k∂δVi,k+1∂δVi,k∂δPi,k+1∂δVi,k∂δbg,k+1∂δVi,k∂δba,k+1∂δPi,k+1∂δϕi,k+1∂δPi,k+1∂δVi,k+1∂δPi,k+1∂δPi,k+1∂δPi,k+1∂δbg,k+1∂δPi,k+1∂δba,k+1∂δbg,k∂δϕi,k+1∂δbg,k∂δVi,k+1∂δbg,k∂δPi,k+1∂δbg,k∂δbg,k+1∂δbg,k∂δba,k+1∂δba,k∂δϕi,k+1∂δba,k∂δVi,k+1∂δba,k∂δPi,k+1∂δba,k∂δbg,k+1∂δba,k∂δba,k+1⎦⎥⎥⎥⎥⎥⎥⎥⎤
G = [ ∂ δ ϕ i , k + 1 ∂ η g , k ∂ δ ϕ i , k + 1 ∂ η a , k ∂ δ ϕ i , k + 1 ∂ η g , k + 1 ∂ δ ϕ i , k + 1 ∂ η a , k + 1 ∂ δ ϕ i , k + 1 ∂ η b w , g , k ∂ δ ϕ i , k + 1 ∂ η b w , a , k ∂ δ V i , k + 1 ∂ η g , k ∂ δ V i , k + 1 ∂ η a , k ∂ δ V i , k + 1 ∂ η g , k + 1 ∂ δ V i , k + 1 ∂ η a , k + 1 ∂ δ V i , k + 1 ∂ η b w , g , k ∂ δ V i , k + 1 ∂ η b w , a , k ∂ δ P i , k + 1 ∂ η g , k ∂ δ P i , k + 1 ∂ η a , k ∂ δ P i , k + 1 ∂ η g , k + 1 ∂ δ P i , k + 1 ∂ η a , k + 1 ∂ δ P i , k + 1 ∂ η b w , g , k ∂ δ P i , k + 1 ∂ η b w , a , k ∂ b g , k + 1 ∂ η g , k ∂ δ b g , k + 1 ∂ η a , k ∂ δ b g , k + 1 ∂ η g , k + 1 ∂ δ b g , k + 1 ∂ η a , k + 1 ∂ δ b g , k + 1 ∂ η b w , g , k ∂ δ b g , k + 1 ∂ η b w , a , k ∂ δ b a , k + 1 ∂ η g , k ∂ δ b a , k + 1 ∂ η a , k ∂ δ b a , k + 1 ∂ η g , k + 1 ∂ δ b a , k + 1 ∂ η a , k + 1 ∂ δ b a , k + 1 ∂ η b w , g , k ∂ δ b a , k + 1 ∂ η b w , a , k ] G = \left[ {\begin{array}{cc} {\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{g,k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{a,k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{g,k + 1}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{a,k + 1}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{{b_{w,g}},k}}}}}&{\frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial {\eta _{_{{b_{w,a}},k}}}}}}\\ {\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{g,k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{a,k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{g,k + 1}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{a,k + 1}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{{b_{w,g}},k}}}}}&{\frac{{\partial \delta {V_{i,k + 1}}}}{{\partial {\eta _{_{{b_{w,a}},k}}}}}}\\ {\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{g,k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{a,k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{g,k + 1}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{a,k + 1}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{{b_{w,g}},k}}}}}&{\frac{{\partial \delta {P_{i,k + 1}}}}{{\partial {\eta _{_{{b_{w,a}},k}}}}}}\\ {\frac{{\partial {b_{g,k + 1}}}}{{\partial {\eta _{g,k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial {\eta _{a,k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial {\eta _{g,k + 1}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial {\eta _{a,k + 1}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial {\eta _{{b_{w,g}},k}}}}}&{\frac{{\partial \delta {b_{g,k + 1}}}}{{\partial {\eta _{_{{b_{w,a}},k}}}}}}\\ {\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{g,k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{a,k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{g,k + 1}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{a,k + 1}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{{b_{w,g}},k}}}}}&{\frac{{\partial \delta {b_{a,k + 1}}}}{{\partial {\eta _{_{{b_{w,a}},k}}}}}} \end{array}} \right] G=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡∂ηg,k∂δϕi,k+1∂ηg,k∂δVi,k+1∂ηg,k∂δPi,k+1∂ηg,k∂bg,k+1∂ηg,k∂δba,k+1∂ηa,k∂δϕi,k+1∂ηa,k∂δVi,k+1∂ηa,k∂δPi,k+1∂ηa,k∂δbg,k+1∂ηa,k∂δba,k+1∂ηg,k+1∂δϕi,k+1∂ηg,k+1∂δVi,k+1∂ηg,k+1∂δPi,k+1∂ηg,k+1∂δbg,k+1∂ηg,k+1∂δba,k+1∂ηa,k+1∂δϕi,k+1∂ηa,k+1∂δVi,k+1∂ηa,k+1∂δPi,k+1∂ηa,k+1∂δbg,k+1∂ηa,k+1∂δba,k+1∂ηbw,g,k∂δϕi,k+1∂ηbw,g,k∂δVi,k+1∂ηbw,g,k∂δPi,k+1∂ηbw,g,k∂δbg,k+1∂ηbw,g,k∂δba,k+1∂ηbw,a,k∂δϕi,k+1∂ηbw,a,k∂δVi,k+1∂ηbw,a,k∂δPi,k+1∂ηbw,a,k∂δbg,k+1∂ηbw,a,k∂δba,k+1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
F ∈ R 15 × 15 G ∈ R 15 × 18 \begin{array}{l}F\in R^{15\times15}\\G\in R^{15\times18}\end{array} F∈R15×15G∈R15×18
F为k+1时刻的状态量对k时刻状态量的雅可比
G为k+1时刻的状态量对噪声的雅可比
下面将雅可比分为三类:
① 0类
② 线性类
③ 复杂类
Δ R i , k + 1 = Δ R i , k ⋅ E x p ( [ Δ t 2 ⋅ [ ( ϖ k − b g , k + η g , k ) + ( ϖ k + 1 − b g , k + η g , k + 1 ) ] ] ∧ ) E x p ( [ Δ ϕ i , k + 1 ] ∧ ) = E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ Δ t 2 ⋅ [ ( ϖ k − b g , k + η g , k ) + ( ϖ k + 1 − b g , k + η g , k + 1 ) ] ] ∧ ) \begin{array}{c} \Delta {R_{i,k + 1}} = \Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\frac{{\Delta t}}{2} \cdot \left[ {\left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right) + \left( {{\varpi _{k + 1}} - {b_{g,k}} + {\eta _{g,k + 1}}} \right)} \right]} \right]}^\land}} \right)\\ Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) = Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\frac{{\Delta t}}{2} \cdot \left[ {\left( {{\varpi _k} - {b_{g,k}} + {\eta _{g,k}}} \right) + \left( {{\varpi _{k + 1}} - {b_{g,k}} + {\eta _{g,k + 1}}} \right)} \right]} \right]}^\land}} \right) \end{array} ΔRi,k+1=ΔRi,k⋅Exp([2Δt⋅[(ϖk−bg,k+ηg,k)+(ϖk+1−bg,k+ηg,k+1)]]∧)Exp([Δϕi,k+1]∧)=Exp([Δϕi,k]∧)⋅Exp([2Δt⋅[(ϖk−bg,k+ηg,k)+(ϖk+1−bg,k+ηg,k+1)]]∧)
①0类:
δ ϕ i , k + 1 \delta {\phi _{i,k + 1}} δϕi,k+1对 δ P i , k \delta {P_{i,k}} δPi,k、 δ V i , k \delta {V_{i,k}} δVi,k、 δ b a , k \delta {b_{a,k}} δba,k的雅可比为0,既:
F 12 = ∂ δ ϕ i , k + 1 ∂ δ V i , k = 0 F 13 = ∂ δ ϕ i , k + 1 ∂ δ V i , k = 0 F 15 = ∂ δ ϕ i , k + 1 ∂ δ b a , k = 0 \begin{array}{l} {F_{12}} = \frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {V_{i,k}}}} = 0\\ {F_{13}} = \frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {V_{i,k}}}} = 0\\ {F_{15}} = \frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {b_{a,k}}}} = 0 \end{array} F12=∂δVi,k∂δϕi,k+1=0F13=∂δVi,k∂δϕi,k+1=0F15=∂δba,k∂δϕi,k+1=0
②线性类:
对 δ b i , k \delta {b_{i,k}} δbi,k的雅可比:
E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ E x p ( [ δ ϕ i , k + 1 ] ∧ ) = E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ E x p ( [ − δ b g , k ⋅ Δ t ] ∧ ) E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ E x p ( [ δ ϕ i , k + 1 ] ∧ ) = E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ E x p ( [ − δ b g , k ⋅ Δ t ] ∧ ) δ ϕ i , k + 1 = − δ b g , k ⋅ Δ t F 14 = ∂ δ ϕ i , k + 1 ∂ δ b g , k = − Δ t ⋅ I \begin{array}{c} Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k + 1}}} \right]}^\land}} \right) = Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ { - \delta {b_{g,k}} \cdot \Delta t} \right]}^\land}} \right)\\ Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k + 1}}} \right]}^\land}} \right) = Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ { - \delta {b_{g,k}} \cdot \Delta t} \right]}^\land}} \right)\\ \delta {\phi _{i,k + 1}} = - \delta {b_{g,k}} \cdot \Delta t\\ {F_{14}} = \frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {b_{g,k}}}} = - \Delta t \cdot I \end{array} Exp([Δϕi,k+1]∧)⋅Exp([δϕi,k+1]∧)=Exp([Δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)⋅Exp([−δbg,k⋅Δt]∧)Exp([Δϕi,k+1]∧)⋅Exp([δϕi,k+1]∧)=Exp([Δϕi,k+1]∧)⋅Exp([−δbg,k⋅Δt]∧)δϕi,k+1=−δbg,k⋅ΔtF14=∂δbg,k∂δϕi,k+1=−Δt⋅I
③复杂类:
对 δ ϕ i , k \delta {\phi _{i,k}} δϕi,k的雅可比:
E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ E x p ( [ δ ϕ i , k + 1 ] ∧ ) = E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k + 1}}} \right]}^\land}} \right) = Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) Exp([Δϕi,k+1]∧)⋅Exp([δϕi,k+1]∧)=Exp([Δϕi,k]∧)⋅Exp([δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)
左边:
E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ E x p ( [ δ ϕ i , k + 1 ] ∧ ) ≈ E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ ( I + [ δ ϕ i , k + 1 ] ∧ ) Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \approx Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot \left( {I + {{\left[ {\delta {\phi _{i,k + 1}}} \right]}^\land}} \right) Exp([Δϕi,k+1]∧)⋅Exp([δϕi,k+1]∧)≈Exp([Δϕi,k+1]∧)⋅(I+[δϕi,k+1]∧)
其中:
当 δ ϕ \delta \phi δϕ 为小量时, E x p ( [ δ ϕ ] ∧ ) ≈ I + [ δ ϕ ] ∧ Exp\left( {{{\left[ {\delta \phi } \right]}^\land}} \right) \approx I + {\left[ {\delta \phi } \right]^\land} Exp([δϕ]∧)≈I+[δϕ]∧
右边:
E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ≈ E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ E x p ( [ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) [ δ ϕ i , k ] ] ∧ ) = E x p ( [ Δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ ( I + [ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) [ δ ϕ i , k ] ] ∧ ) = E x p ( [ Δ ϕ i , k + 1 ] ∧ ) ⋅ ( I + [ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) ⋅ [ δ ϕ i , k ] ] ∧ ) \begin{array}{c} Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \approx Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right)\left[ {\delta {\phi _{i,k}}} \right]} \right]}^\land}} \right)\\ = Exp\left( {{{\left[ {\Delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {I + {{\left[ {Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right)\left[ {\delta {\phi _{i,k}}} \right]} \right]}^\land}} \right)\\ = Exp\left( {{{\left[ {\Delta {\phi _{i,k + 1}}} \right]}^\land}} \right) \cdot \left( {I + {{\left[ {Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left[ {\delta {\phi _{i,k}}} \right]} \right]}^\land}} \right) \end{array} Exp([Δϕi,k]∧)⋅Exp([δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)≈Exp([Δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)⋅Exp([Exp([−ϖ~⋅Δt]∧)[δϕi,k]]∧)=Exp([Δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)⋅(I+[Exp([−ϖ~⋅Δt]∧)[δϕi,k]]∧)=Exp([Δϕi,k+1]∧)⋅(I+[Exp([−ϖ~⋅Δt]∧)⋅[δϕi,k]]∧)
其中:
E x p ( ϕ ∧ ) ⋅ R = R ⋅ E x p ( [ R T ⋅ ϕ ] ∧ ) E x p ( φ ∧ ) T = E x p ( [ − φ ] ∧ ) \begin{array}{c} Exp\left( {{\phi ^\land}} \right) \cdot R = R \cdot Exp\left( {{{\left[ {{R^T} \cdot \phi } \right]}^\land}} \right)\\ Exp{\left( {{\varphi ^\land}} \right)^T} = Exp\left( {{{\left[ { - \varphi } \right]}^\land}} \right) \end{array} Exp(ϕ∧)⋅R=R⋅Exp([RT⋅ϕ]∧)Exp(φ∧)T=Exp([−φ]∧)
所以:
δ ϕ i , k + 1 ≈ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) ⋅ δ ϕ i , k ≈ ( I − [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ δ ϕ i , k \begin{array}{c} \delta {\phi _{i,k + 1}} \approx Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \delta {\phi _{i,k}}\\ \approx \left( {I - {{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \delta {\phi _{i,k}} \end{array} δϕi,k+1≈Exp([−ϖ~⋅Δt]∧)⋅δϕi,k≈(I−[ϖ~⋅Δt]∧)⋅δϕi,k
F 11 = ∂ δ ϕ i , k + 1 ∂ δ ϕ i , k = I − [ ϖ ~ ⋅ Δ t ] ∧ {F_{11}} = \frac{{\partial \delta {\phi _{i,k + 1}}}}{{\partial \delta {\phi _{i,k}}}} = I - {\left[ {\tilde \varpi \cdot \Delta t} \right]^\land} F11=∂δϕi,k∂δϕi,k+1=I−[ϖ~⋅Δt]∧
Δ P i , k + 1 = Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k + η a , k ) + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k + η a , k + 1 ) ] \Delta {P_{i,k + 1}} = \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} + {\eta _{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {{a_{k + 1}} - {b_{a,k}} + {\eta _{a,k + 1}}} \right)} \right] ΔPi,k+1=ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅(ak−ba,k+ηa,k)+ΔRi,k+1⋅(ak+1−ba,k+ηa,k+1)]
②线性类:
对 δ P i , k \delta {P_{i,k}} δPi,k的雅可比:
F 33 = ∂ δ P i , k + 1 ∂ δ P i , k = I {F_{33}} = \frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {P_{i,k}}}} = I F33=∂δPi,k∂δPi,k+1=I
对 δ V i , k \delta {V_{i,k}} δVi,k的雅可比:
F 32 = ∂ δ P i , k + 1 ∂ δ V i , k = Δ t ⋅ I {F_{32}} = \frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {V_{i,k}}}} = \Delta t \cdot I F32=∂δVi,k∂δPi,k+1=Δt⋅I
对 δ b a , k \delta {b_{a,k}} δba,k的雅可比:
Δ P i , k + 1 + δ P i , k + 1 = Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k − δ b a , k ) + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k − δ b a , k ) ] δ P i , k + 1 = − Δ t 2 4 ⋅ ( Δ R i , k ⋅ δ b a , k + Δ R i , k + 1 ⋅ δ b a , k ) F 35 = ∂ δ P i , k + 1 δ b a , k = − Δ t 2 4 ( Δ R i , k + Δ R i , k + 1 ) \begin{array}{c} \Delta {P_{i,k + 1}} + \delta {P_{i,k + 1}} = \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}} - \delta {b_{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {{a_{k + 1}} - {b_{a,k}} - \delta {b_{a,k}}} \right)} \right]\\ \delta {P_{i,k + 1}} = - \frac{{\Delta {t^2}}}{4} \cdot \left( {\Delta {R_{i,k}} \cdot \delta {b_{a,k}} + \Delta {R_{i,k + 1}} \cdot \delta {b_{a,k}}} \right)\\ {F_{35}} = \frac{{\partial \delta {P_{i,k + 1}}}}{{\delta {b_{a,k}}}} = - \frac{{\Delta {t^2}}}{4}\left( {\Delta {R_{i,k}} + \Delta {R_{i,k + 1}}} \right) \end{array} ΔPi,k+1+δPi,k+1=ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅(ak−ba,k−δba,k)+ΔRi,k+1⋅(ak+1−ba,k−δba,k)]δPi,k+1=−4Δt2⋅(ΔRi,k⋅δba,k+ΔRi,k+1⋅δba,k)F35=δba,k∂δPi,k+1=−4Δt2(ΔRi,k+ΔRi,k+1)
③复杂类:
对 δ ϕ i , k \delta {\phi _{i,k}} δϕi,k的雅可比:
Δ P i , k + 1 + δ P i , k + 1 = Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ E x p ( [ δ ϕ i , k ] ∧ ) ⋅ ( a k − b a , k ) + Δ R i , k ⋅ E x p ( [ δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] Δ P i , k + 1 + δ P i , k + 1 ≈ Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( I + [ δ ϕ i , k ] ∧ ) ⋅ ( a k − b a , k ) + Δ R i , k ⋅ ( I + [ δ ϕ i , k ] ∧ ) ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] \begin{array}{c} \Delta {P_{i,k + 1}} + \delta {P_{i,k + 1}} = \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot \left( {{a_k} - {b_{a,k}}} \right) + \Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right]\\ \Delta {P_{i,k + 1}} + \delta {P_{i,k + 1}} \approx \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {I + {{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot \left( {{a_k} - {b_{a,k}}} \right) + \Delta {R_{i,k}} \cdot \left( {I + {{\left[ {\delta {\phi _{i,k}}} \right]}^\land}} \right) \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right] \end{array} ΔPi,k+1+δPi,k+1=ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅Exp([δϕi,k]∧)⋅(ak−ba,k)+ΔRi,k⋅Exp([δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)⋅(ak+1−ba,k)]ΔPi,k+1+δPi,k+1≈ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅(I+[δϕi,k]∧)⋅(ak−ba,k)+ΔRi,k⋅(I+[δϕi,k]∧)⋅Exp([ϖ~⋅Δt]∧)⋅(ak+1−ba,k)]
δ P i , k + 1 = Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( δ ϕ i , k ) ∧ ⋅ ( a k − b a , k ) + Δ R i , k ⋅ ( δ ϕ i , k ) ∧ ⋅ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] δ P i , k + 1 = − Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k ) ∧ ⋅ δ ϕ i , k + Δ R i , k ⋅ [ E x p ( [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] ∧ ⋅ δ ϕ i , k ] δ P i , k + 1 = − Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k ) ∧ ⋅ δ ϕ i , k + Δ R i , k ⋅ E x p ( [ ϖ ~ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ∧ ⋅ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) ⋅ δ ϕ i , k ] δ P i , k + 1 = − Δ t 2 4 [ Δ R i , k ⋅ ( a k − b a , k ) ∧ ⋅ δ ϕ i , k + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k ) ∧ ⋅ E x p ( [ − ϖ ~ ⋅ Δ t ] ∧ ) ⋅ δ ϕ i , k ] δ P i , k + 1 ≈ − Δ t 2 4 [ Δ R i , k ⋅ ( a k − b a , k ) ∧ ⋅ δ ϕ i , k + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k ) ∧ ⋅ ( I − [ ϖ ~ ⋅ Δ t ] ∧ ) ⋅ δ ϕ i , k ] F 31 = ∂ δ P i , k + 1 δ ϕ i , k = − Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k ) ∧ + Δ R i , k + 1 ⋅ ( a k + 1 − b a , k ) ∧ ⋅ ( I − [ ϖ ~ ⋅ Δ t ] ∧ ) ] \begin{array}{c} \delta {P_{i,k + 1}} = \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot {{\left( {\delta {\phi _{i,k}}} \right)}^\land} \cdot \left( {{a_k} - {b_{a,k}}} \right) + \Delta {R_{i,k}} \cdot {{\left( {\delta {\phi _{i,k}}} \right)}^\land} \cdot Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right]\\ \delta {P_{i,k + 1}} = - \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot {{\left( {{a_k} - {b_{a,k}}} \right)}^\land} \cdot \delta {\phi _{i,k}} + \Delta {R_{i,k}} \cdot {{\left[ {Exp\left( {{{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right]}^\land} \cdot \delta {\phi _{i,k}}} \right]\\ \delta {P_{i,k + 1}} = - \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot {{\left( {{a_k} - {b_{a,k}}} \right)}^\land} \cdot \delta {\phi _{i,k}} + \Delta {R_{i,k}} \cdot Exp\left( {{{\left[ {\tilde \varpi \Delta t} \right]}^\land}} \right) \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land} \cdot Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \delta {\phi _{i,k}}} \right]\\ \delta {P_{i,k + 1}} = - \frac{{\Delta {t^2}}}{4}\left[ {\Delta {R_{i,k}} \cdot {{\left( {{a_k} - {b_{a,k}}} \right)}^\land} \cdot \delta {\phi _{i,k}} + \Delta {R_{i,k + 1}} \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land} \cdot Exp\left( {{{\left[ { - \tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \delta {\phi _{i,k}}} \right]\\ \delta {P_{i,k + 1}} \approx - \frac{{\Delta {t^2}}}{4}\left[ {\Delta {R_{i,k}} \cdot {{\left( {{a_k} - {b_{a,k}}} \right)}^\land} \cdot \delta {\phi _{i,k}} + \Delta {R_{i,k + 1}} \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land} \cdot \left( {I - {{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right) \cdot \delta {\phi _{i,k}}} \right]\\ {F_{31}} = \frac{{\partial \delta {P_{i,k + 1}}}}{{\delta {\phi _{i,k}}}} = - \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot {{\left( {{a_k} - {b_{a,k}}} \right)}^\land} + \Delta {R_{i,k + 1}} \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land} \cdot \left( {I - {{\left[ {\tilde \varpi \cdot \Delta t} \right]}^\land}} \right)} \right] \end{array} δPi,k+1=4Δt2⋅[ΔRi,k⋅(δϕi,k)∧⋅(ak−ba,k)+ΔRi,k⋅(δϕi,k)∧⋅Exp([ϖ~⋅Δt]∧)⋅(ak+1−ba,k)]δPi,k+1=−4Δt2⋅[ΔRi,k⋅(ak−ba,k)∧⋅δϕi,k+ΔRi,k⋅[Exp([ϖ~⋅Δt]∧)⋅(ak+1−ba,k)]∧⋅δϕi,k]δPi,k+1=−4Δt2⋅[ΔRi,k⋅(ak−ba,k)∧⋅δϕi,k+ΔRi,k⋅Exp([ϖ~Δt]∧)⋅(ak+1−ba,k)∧⋅Exp([−ϖ~⋅Δt]∧)⋅δϕi,k]δPi,k+1=−4Δt2[ΔRi,k⋅(ak−ba,k)∧⋅δϕi,k+ΔRi,k+1⋅(ak+1−ba,k)∧⋅Exp([−ϖ~⋅Δt]∧)⋅δϕi,k]δPi,k+1≈−4Δt2[ΔRi,k⋅(ak−ba,k)∧⋅δϕi,k+ΔRi,k+1⋅(ak+1−ba,k)∧⋅(I−[ϖ~⋅Δt]∧)⋅δϕi,k]F31=δϕi,k∂δPi,k+1=−4Δt2⋅[ΔRi,k⋅(ak−ba,k)∧+ΔRi,k+1⋅(ak+1−ba,k)∧⋅(I−[ϖ~⋅Δt]∧)]
对 δ b g , k \delta {b_{g,k}} δbg,k的雅可比:
Δ P i , k + 1 + δ P i , k + 1 = Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k ) + Δ R i , k + 1 ⋅ E x p ( [ − δ b g , k ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] Δ P i , k + 1 + δ P i , k + 1 ≈ Δ P i , k + Δ V i , k ⋅ Δ t + Δ t 2 4 ⋅ [ Δ R i , k ⋅ ( a k − b a , k ) + Δ R i , k + 1 ⋅ ( I − [ δ b g , k ⋅ Δ t ] ∧ ) ⋅ ( a k + 1 − b a , k ) ] \begin{array}{c} \Delta {P_{i,k + 1}} + \delta {P_{i,k + 1}} = \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot Exp\left( {{{\left[ { - \delta {b_{g,k}} \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right]\\ \Delta {P_{i,k + 1}} + \delta {P_{i,k + 1}} \approx \Delta {P_{i,k}} + \Delta {V_{i,k}} \cdot \Delta t + \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k}} \cdot \left( {{a_k} - {b_{a,k}}} \right) + \Delta {R_{i,k + 1}} \cdot \left( {I - {{\left[ {\delta {b_{g,k}} \cdot \Delta t} \right]}^\land}} \right) \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right] \end{array} ΔPi,k+1+δPi,k+1=ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅(ak−ba,k)+ΔRi,k+1⋅Exp([−δbg,k⋅Δt]∧)⋅(ak+1−ba,k)]ΔPi,k+1+δPi,k+1≈ΔPi,k+ΔVi,k⋅Δt+4Δt2⋅[ΔRi,k⋅(ak−ba,k)+ΔRi,k+1⋅(I−[δbg,k⋅Δt]∧)⋅(ak+1−ba,k)]
δ P i , k + 1 = − Δ t 2 4 ⋅ [ Δ R i , k + 1 ⋅ ( δ b g , k ⋅ Δ t ) ∧ ⋅ ( a k + 1 − b a , k ) ] δ P i , k + 1 = Δ t 2 4 ⋅ [ Δ R i , k + 1 ⋅ ( a k + 1 − b a , k ) ∧ ⋅ δ b g , k ⋅ Δ t ] F 34 = ∂ δ P i , k + 1 ∂ δ b g , k = Δ t 3 4 ⋅ [ Δ R i , k + 1 ⋅ ( a k + 1 − b a , k ) ∧ ] \begin{array}{c} \delta {P_{i,k + 1}} = - \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k + 1}} \cdot {{\left( {\delta {b_{g,k}} \cdot \Delta t} \right)}^\land} \cdot \left( {{a_{k + 1}} - {b_{a,k}}} \right)} \right]\\ \delta {P_{i,k + 1}} = \frac{{\Delta {t^2}}}{4} \cdot \left[ {\Delta {R_{i,k + 1}} \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land} \cdot \delta {b_{g,k}} \cdot \Delta t} \right]\\ {F_{34}} = \frac{{\partial \delta {P_{i,k + 1}}}}{{\partial \delta {b_{g,k}}}} = \frac{{\Delta {t^3}}}{4} \cdot \left[ {\Delta {R_{i,k + 1}} \cdot {{\left( {{a_{k + 1}} - {b_{a,k}}} \right)}^\land}} \right] \end{array} δPi,k+1=−4Δt2⋅[ΔRi,k+1⋅(δbg,k⋅Δt)∧⋅(ak+1−ba,k)]δPi,k+1=4Δt2⋅[ΔRi,k+1⋅(ak+1−ba,k)∧⋅δbg,k⋅Δt]F34=∂δbg,k∂δPi,k+1=4Δt3⋅[ΔRi,k+1⋅(ak+1−ba,k)∧]
[1]: 视觉slam14讲
[2]: 机器人学中的状态估计
[3]: 邱笑晨博士imu预积分推导