传送门:E. Sasha and Array
Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:
In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.
Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?
The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.
It's guaranteed that the input will contains at least one query of the second type.
For each query of the second type print the answer modulo 109 + 7.
5 4 1 1 2 1 1 2 1 5 1 2 4 2 2 2 4 2 1 5
5 7 9
Initially, array a is equal to 1, 1, 2, 1, 1.
The answer for the first query of the second type is f(1) + f(1) + f(2) + f(1) + f(1) = 1 + 1 + 1 + 1 + 1 = 5.
After the query 1 2 4 2 array a is equal to 1, 3, 4, 3, 1.
The answer for the second query of the second type is f(3) + f(4) + f(3) = 2 + 3 + 2 = 7.
The answer for the third query of the second type is f(1) + f(3) + f(4) + f(3) + f(1) = 1 + 2 + 3 + 2 + 1 = 9.
#include
#define pr(x) cout << #x << "= " << x << " " ;
#define pl(x) cout << #x << "= " << x << endl;
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define ll __int64
using namespace std;
template void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
const ll M=1e9+7;
const int maxn=1e5+10;
struct Matrix{
ll v[2][2];
};
void init(Matrix& ad){
ad.v[0][0]=1; ad.v[0][1]=1;
ad.v[1][0]=1; ad.v[1][1]=0;
}
Matrix mtAdd(Matrix A, Matrix B){ // 求矩阵 A + B
int i, j;
Matrix C;
for(i = 0; i < 2; i ++)
for(j = 0; j < 2; j ++){
C.v[i][j] = (A.v[i][j] + B.v[i][j]) % M;
}
return C;
}
Matrix mtMul(Matrix A, Matrix B){ // 求矩阵 A * B
int i, j, k;
Matrix C;
for(i = 0; i < 2; i ++)
for(j = 0; j < 2; j ++){
C.v[i][j] = 0;
for(k = 0; k < 2; k ++){
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % M;
}
}
return C;
}
Matrix mtPow(Matrix A, int k){ // 求矩阵 A ^ k
if(k == 0) {
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < 2; i ++){
A.v[i][i] = 1;
}
return A;
}
if(k == 1) return A;
Matrix C = mtPow(A, k / 2);
if(k % 2 == 0) {
return mtMul(C, C);
}
else {
return mtMul(mtMul(C, C), A);
}
}
Matrix sum[maxn<<2],add[maxn<<2],A;
void PushUp(int rt){
sum[rt]=mtAdd(sum[rt<<1], sum[rt<<1|1]);
}
void PushDown(int rt){
add[rt<<1]=mtMul(add[rt<<1], add[rt]);
add[rt<<1|1]=mtMul(add[rt<<1|1], add[rt]);
sum[rt<<1]=mtMul(sum[rt<<1], add[rt]);
sum[rt<<1|1]=mtMul(sum[rt<<1|1], add[rt]);
add[rt]=mtPow(A, 0);
}
void build(int l, int r,int rt){
add[rt]=mtPow(A, 0);//初始化为单位矩阵
sum[rt]=mtPow(A, 0);
if(l==r){
int x;read(x);
sum[rt]=mtPow(A, x-1);
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,Matrix c,int l,int r,int rt){
if(L<=l && R>=r){
sum[rt]=mtMul(sum[rt], c);
add[rt]=mtMul(add[rt], c);
return;
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m)update(L, R, c, lson);
if(R>m)update(L, R, c, rson);
PushUp(rt);
}
ll query(int L,int R,int l, int r,int rt){
if(L<=l && R>=r){
return sum[rt].v[0][0];
}
PushDown(rt);
int m=(l+r)>>1;
ll ret=0;
if(L<=m)ret=(ret+query(L, R, lson))%M;
if(R>m)ret=(ret+query(L, R, rson))%M;
PushUp(rt);
return ret;
}
//debug用
void print(int l,int r,int rt){
if(l==r){
for(int i=0;i<2;i++){
for(int j=0;j<2;j++)
printf("%I64d ",sum[rt].v[i][j]);
printf("\n");
}
printf("\n");
return;
}
int m=(l+r)>>1;
print(lson);
print(rson);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n,m;
init(A);
read(n);read(m);
build(1, n, 1);
int op,a,b;
while(m--){
read(op);read(a);read(b);
if(op==1){
int x;read(x);
update(a, b, mtPow(A, x), 1, n, 1);
}
else{
printf("%I64d\n", query(a, b, 1, n, 1));
}
}
return 0;
}