- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 统计学习方法笔记之逻辑斯谛模型与最大熵模型
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog逻辑斯谛回归(LogisticRegression)模型是经典的分类方法,而最大熵则是概率模型中学习的一个准则,将其推广到分类问题得到最大熵模型(maximumentropymodel)。两者都属于对数线性模型。逻辑斯谛模型逻辑斯谛分布设是连续随机变量,服从逻辑斯谛分布是指具有以下分布函数和密度函数:其中,是位置参数,为形状参数。逻辑斯谛分布的密度函数
- 统计学习方法笔记二---感知机(Perceptron Learning Algorithm,PLA)
爱科研的徐博士
【算法】统计学习方法统计学习方法机器学习
简介感知机(perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型,解决的问题是分类问题。目标/目的:求出将训练数据进行线性划分的分类超平面,为此导入误分类的损失函数,利用梯度下降法对损失函数进行最小化,求的感知机模型。感知机学习算法具有简单而易于实现的优点,分为原始
- 统计学习方法笔记——第一章(1)
Run!Rabbit Run!
统计学习方法机器学习笔记机器学习数据分析概率论
概论1.统计学习方法三要素:模型(model)、策略(strategy)、算法(algorithm)2.实现步骤得到有限的训练数据集合确定包含所有可能的模型的假设空间,即学习模型的集合确定模型选择的准则,即学习的策略实现求解最优模型的算法通过学习方法选择最优模型利用学习的最优模型对新数据进行预测或分析3.统计学习基本分类监督学习从标注数据中学习预测模型的机器学习问题,本质是学习输入到输出的映射的统
- 统计学习方法笔记之k近邻算法(附代码实现)
Aengus_Sun
更多文章可以访问我的博客Aengus|Blogk近邻法即kNN算法,是假设给定一个训练集,对于每个训练样本的分类已经确认,当对测试样本分类时,根据其k个最近邻的训练样本的类别,通过多数表决的方式进行预测。kNN算法没有显式的学习过程。kNN算法假设给定的训练集为,其中,,步骤为:(1)根据给定的距离度量(即距离计算方法),在训练集中找出与测试样本的前个最近邻的点,涵盖这个点的的邻域记作;(2)在中
- 统计学习方法笔记,第二章感知机的python代码实现
努力学挖掘机的李某某
《统计学习方法》笔记python感知机数据挖掘机器学习
实现的比较粗糙,代码如下:classPerceptron:importnumpyasnpdef__init__(self,w=0,b=0,lr=1,epoch=100):self.weight=wself.bias=bself.lr=lr#lr:learningrateself.epoch=epochdefsign(self,x):ifnp.dot(np.array(self.weight),x)
- 深度学习/机器学习资料汇总
金州啦啦啦啦文
深度学习深度学习人工智能
学习资料汇总读研期间收集的学习资料汇总(持续更新中)MachineLearningDeepLearningSeq2SeqLSTMAttentionSelf-AttentionTransfomerBert(这周目标)读研期间收集的学习资料汇总(持续更新中)MachineLearning西瓜书以及统计学习方法笔记:笔记西瓜书第三章课后习题:第三章课后习题西瓜书公式详解(南瓜书):南瓜书统计学习方法第二
- 统计学习方法笔记(李航)———第四章(朴素贝叶斯法)
越前浩波
机器/深度学习math机器学习
推荐阅读:小白之通俗易懂的贝叶斯定理(Bayes’Theorem)朴素贝叶斯法是一种多分类算法,它的基础是“朴素贝叶斯假设”(假设实例的各个特征具有条件独立性)。根据训练集估计模型的先验概率、条件概率,再按照后验概率最大化的准则,给出输入实例的分类预测。它的算法实现很简单,但理论证明并不容易。具体来说,通过极大似然估计法估计先验概率、条件概率,计算过程比较复杂,书上也没有给出。本章主要分为3个部分
- 统计学习方法笔记_cbr:第十一章:条件随机场
chenburong2021
统计学习方法笔记学习算法机器学习
第十一章:条件随机场11.1概率无向图模型定义:联合概率分布满足成对,局部or全局Markov性,就称之为probabilisticundirectedgraphicalmodelorMarkovrandomfield;11.2条件随机场的定义与形式给定观测求状态;定义:若随机变量Y构成的无向图,对于任意结点满足Markovrandomfield,那么称其条件概率分布为条件随机场;11.3条件随机
- 统计学习方法笔记_cbr:第二章 感知机
chenburong2021
统计学习方法笔记机器学习人工智能深度学习
第二章感知机目录第二章感知机2.1感知机模型2.2感知机学习策略2.2.1数据集的线性可分性;2.2.2感知机学习策略2.3感知机学习算法2.3.1感知机学习算法的原始形式2.3.2感知机学习算法的原始形对偶式2.1感知机模型感知机是二类分类的线性分类模型,判别模型输入x(属于X)表示为实例的特征向量;对应与输入空间(特征空间)的点;输出y表示实例的类别取+1,-1;输入空间到输出空间的函数:f(
- 统计学习方法笔记(理论+实例+课后习题+代码实现):感知机
Jackson_feng
统计学习方法笔记大数据
1引言1957年Rosenblatt提出感知机模型,它是神经网络和支持向量机的基础。其主要适用于分类任务,训练好的感知机模型可将数据集正确地分为两类:超平面以上为正类,超平面以下为负类(后面会讲到感知机是一个超平面)。它通过利用梯度下降法最小化损失函数的思想让感知机学习到最优的状态,使得数据集的误分类点个数为0。其优点主要体现在其算法实现相对简单。2理论2.1定义设输入特征向量为,感知机权重为,偏
- 统计学习方法笔记(一):感知机
通辽码农
统计学习学习
统计学习方法笔记(一):感知机前言:本文是基于李航老师《统计学习方法》的笔记~感知机学习的目的:求出将训练数据进行线性划分的分离超平面。1.感知机模型:1.1数学形式:f(x)=sign(w⋅x+b)f(x)=sign(w\cdotx+b)f(x)=sign(w⋅x+b)其中输入空间为XϵRnX\epsilonR^{n}XϵRn,输出空间为Y={+1,−1}Y=\begin{Bmatrix}+1,
- 统计学习方法笔记七----决策树
爱科研的徐博士
【算法】统计学习方法统计学决策树ID3C4-5CART
前言决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则(if-then)的方法。决策树分为分类树和回归树两种,分类数对离散变量做决策树,回归树对连续变量做决策树。本节主要讨论用于分类的决策树。在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失
- 统计学习方法笔记-隐马尔可夫模型(内含Python代码实现)
三岁就很萌@D
统计学习方法机器学习算法
一马尔可夫模型我们通过一个具体的例子来介绍一下什么是马尔可夫模型我们假设天气有3种情况,阴天,雨天,晴天,它们之间的转换关系如下:(稍微解释一下这个图,我们可以这样认为,已知第一天是阴天,那第二天是阴天的概率是0.1,第二天是晴天的概率是0.3,第二天是雨天的概率是0.6)每一个状态转换到另一个状态或者自身的状态都有一定的概率。马尔可夫模型就是用来表述上述问题的一个模型。有这样一个状态链,第一天是
- 统计学习方法---李航
02Bigboy
书籍学习学习机器学习数据挖掘
统计学习方法笔记第一章:统计学习概论1.1统计学习统计学习(statisticallearning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statisticalmachinelearning).机器学习称为统计学习更学术化。HerbertA.simon对“学习”的定义我觉得挺好的:如果一个系统能够通过执行某个过程改进它的性能,这就
- 统计学习方法笔记(李航)———第一章(统计学习方法概论)
越前浩波
math机器/深度学习机器学习统计模型
一、基本概念假设空间(Hypothesisspace)相对“输入空间”、“输出空间”、“特征空间”等向量空间,假设空间的概念比较抽象。首先它是一个“映射”的集合。什么是映射呢?在这里暂且理解为函数吧。输入空间中的一个n维向量x,通过函数f(⋅)f(\cdot)f(⋅)得到了输出空间中的m维向量y:注意:按照符号规定,x(i)x^{(i)}x(i)表示此向量的第iii个分量(特征),xix_{i}x
- 机器学习:李航-统计学习方法笔记(一)监督学习概论
凌贤文
机器学习机器学习学习python
目录1.1统计学习1.2统计学习的分类1.2.1基本分类监督学习定义:无监督学习强化学习半监督学习主动学习1.2.2按模型分类1.2.3按算法分类1.2.4按技巧分类贝叶斯学习(Bayesianlearning)核方法(kernelmethod)1.3统计学习的三要素模型策略算法1.1统计学习统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。也可以说统计学习就是
- 统计学习方法笔记_cbr
chenburong2021
统计学习方法笔记学习机器学习人工智能
第一章笔记,统计学习及监督学习概论目录第一章笔记,统计学习及监督学习概论1.1统计学习1.统计学习的特点2.统计学习的对象3.统计学习的方法4.统计学习的研究1.2统计学习的分类1.2.1基本分类1.监督学习(1)输入空间、特征空间和输出空间;(2)联合概率分布(3)假设空间2.无监督学习3.强化学习4.半监督学习与主动学习1.2.2按模型分类1.概率模型与非概率模型2.线性模型与非线性模型3.参
- 统计学习方法笔记(未完待续)
popofzk
NLPNLP统计学习方法
前言:参考了一位NLP学长的博客,受益颇多,跟着学长学习李航老师的《统计学习方法》,希望整理一些重点,便于翻阅,日积月累,为三年后的面试打下基础!代码来自:https://www.pkudodo.com基本内容(一)感知机定义:代码:(二)K-邻近定义:代码:(三)朴素贝叶斯定义:代码:(四)决策树定义:代码:(五)逻辑回归定义:(一)感知机定义:感知机是二分类的线性模型,属于判别模型.感知机学习
- 统计学习方法笔记(李航)———第三章(k近邻法)
越前浩波
math机器学习python
k近邻法(k-NN)是一种基于实例的学习方法,无法转化为对参数空间的搜索问题(参数最优化问题)。它的特点是对特征空间进行搜索。除了k近邻法,本章还对以下几个问题进行较深入的讨论:切比雪夫距离L∞(xi,xj)L_{\infty}\left(x_{i},x_{j}\right)L∞(xi,xj)的计算“近似误差”与“估计误差"的含义k-d树搜索算法图解一、算法输入:训练集T={(x1,y1),(x2
- Raki的统计学习方法笔记0xF(15)章:奇异值分解
爱睡觉的Raki
统计学习方法线性代数矩阵机器学习人工智能算法
奇异值分解是一种矩阵因子分解方法,是线性代数的基础概念,在统计学习中被广泛运用,PCA,LSA,pLSA都要用到SVD,而EM,LSA,MCMC,又是LDA的基础,故有了这个笔记顺序任意一个m*n矩阵,都可以表示为三个矩阵的乘积(因子分解)形式,分别是m阶正交矩阵,由降序排列的非负的对角线元素组成的m*n矩形对角矩阵,n阶正交矩阵成为该矩阵的奇异值分解,矩阵的奇异值分解一定存在但是不唯一。奇异值分
- 统计学习方法
和蔼的zhxing
研一上机器学习课程最后准备考试的时候看过一点点这本书,没有系统得看过,最近准备系统得看一遍,顺便写一些笔记,主要框架就是李航的《统计学习方法》这本书,参考了西瓜书的一点内容和一些博客,有一些关键部分的证明自己都照着书手推了一遍,想着公式太麻烦了,于是就用word写了,然后放在github上了。地址放在这里统计学习方法笔记.
- NLP面试题汇总1(吐血整理)
一种tang两种味
nlp自然语言处理机器学习神经网络数据挖掘
统计学习方法笔记当正负样本极度不均衡时存在问题!比如,正样本有99%时,分类器只要将所有样本划分为正样本就可以达到99%的准确率。但显然这个分类器是存在问题的。当正负样本不均衡时,常用的评价指标为ROC曲线和PR曲线。概率模型:决策树、bayes、HMM、CRF、概率潜在语义分析、潜在狄利克雷分析lda、高斯混合模型(一定可以表示为联合概率分布的形式,)概率模型的代表是概率图模型,即联合概率分布由
- 统计学习方法笔记(十五)条件随机场(三)
yeyustudy
统计学习方法笔记
条件随机场的预测算法预测问题:给定条件随机场P(Y|X)P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列y∗y∗。条件随机场的预测算法是著名的维特比算法。y∗=argmaxyPw(y|x)=argmaxy(wF(y,x))y∗=argmaxyPw(y|x)=argmaxy(wF(y,x))条件随机场的预测问题变为求非规范化概率最大的最优路径问题:maxy(wF(y,x))ma
- 统计学习方法笔记(十五)条件随机场(二)
yeyustudy
统计学习方法笔记
条件随机场的概率计算问题问题描述:给定条件随机场P(Y|X)P(Y|X),输入序列x和输出序列y,计算条件概率P(Yi=yi|x),P(Yi−1=yi−1,Yi=yi|x)P(Yi=yi|x),P(Yi−1=yi−1,Yi=yi|x)以及相应的数学期望的问题。一、前向-后向算法对每个指标i=0,1,⋯,n+1i=0,1,⋯,n+1,定义前向向量αi(x)αi(x):对于α0(y|x)α0(y|x)
- 统计学习方法笔记(十五)条件随机场(一)
yeyustudy
统计学习方法笔记
条件随机场条件随机场是给定一组输入随机变量条件下另一组输出随机变量的条件概率模型,其假设输出随机变量构成马尔可夫随机场概率无向图模型概率无向图模型,又称为马尔可夫随机场,是一个可以由无向图表示的联合概率分布。一、模型定义1、图是由结点及连接节点的边组成的集合。无向图是指边没有方向的图。概率图模型是由图表示的概率分布。设有联合概率分布P(Y)P(Y),YY是一组随机变量,由无向图G=(V,E)G=(
- 统计学习方法笔记(六)-非线性支持向量机原理及python实现
脑机接口社区
机器学习算法系列实现
非线性支持向量机非线性支持向量机定义非线性支持向量机算法非线性支持向量机学习算法代码案例TensorFlow案例地址非线性支持向量机定义非线性支持向量机从非线性分类训练集,通过核函数与软间隔最大化,或凸二次规划,学习得到的分类决策函数f(x)=sign(∑i=1Nαi∗yiK(x,xi)+b∗){f(x)=\operatorname{sign}\left(\sum_{i=1}^{N}\alpha
- 统计学习方法笔记(四)-最大熵模型原理及python实现
脑机接口社区
机器学习算法系列实现
最大熵模型最大熵模型最大熵原理最大熵模型代码实现案例地址最大熵模型最大熵模型(maximumentropymodel)可以用于二分类,也可以用于多分类。其是由最大熵原理推导实现的,所以讲最大熵模型时,绕不开最大熵原理。最大熵原理什么是最大熵原理?最大熵原理认为,学习概率模型时,在所有可能的概率模型(概率分布)中,熵最大的模型就是最好的模型。最大熵原理通常表述为在满足约束条件的模型集合中选取熵最大的
- 统计学习方法笔记(十)逻辑斯谛回归与最大熵模型
yeyustudy
统计学习方法笔记
逻辑斯谛回归与最大熵模型主要用于统计学习中的经典分类方法逻辑斯谛回归模型1、定义:设X是连续随机变量,其具有的分布函数和密度函数:F(x)=P(X≤x)=11+e−(x−μ)/γF(x)=P(X≤x)=11+e−(x−μ)/γf(x)=F′(x)=e−(x−μ)/γγ(1+e−(x−μ)/γ)2f(x)=F′(x)=e−(x−μ)/γγ(1+e−(x−μ)/γ)2其中,μμ为位置参数,γ>0γ>0
- 统计学习方法笔记(一):K近邻法的实现:kd树
好好学习_天天向上de
学习笔记统计学习方法
实现k近邻算法时,首要考虑的问题是如何对训练数据进行快速的k近邻搜索。这点在特征空间的维数大于训练数据容量时尤为重要。构造kd树 kd树是一种对k为空间中的实例点进行存储的一边对其进行快速检索的树形数据结构。kd树是二叉树,表示对k维空间的一个划分(partition)。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分。构成一系列的k维超矩形区域。kd树的每个结点对应于一个k维的超
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多