Codeforces C Anna, Svyatoslav and Maps (floyd最短路 & 贪心)

传送门

题意: 题意有点复杂,现有n个点的有向无权图,给出一条路径p。试问是否可以去掉p序列中的部分点,使得剩余序列所经路径依旧是原路径(长度不变)。
Codeforces C Anna, Svyatoslav and Maps (floyd最短路 & 贪心)_第1张图片
Codeforces C Anna, Svyatoslav and Maps (floyd最短路 & 贪心)_第2张图片

思路:

  • 由于数据范围比较小,可以直接floyd处理。
  • 每次找到给定路径上终点到当前点的最短路,如果最短路小于给的路径的长度,那么把路径上该点的上一个点加进去。

代码实现:

#include
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 1e6 + 7;

int n, m, dis;
char s[N];
int p[N], f[205][205];
vector<int> vt;

void floyd(){
    for(int k = 1; k <= n; k ++)
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= n; j ++)
                f[i][j] = min(f[i][j], f[i][k]+f[k][j]);
}

signed main()
{
    IOS;

    cin >> n;
    for(int i = 1; i <= n; i ++){
        cin >> s+1;
        for(int j = 1; j <= n; j ++){
            f[i][j] = s[j]=='0'?inf:1;
            if(i == j) f[i][j] = 0;
        }
    }
    floyd();
    cin >> m;
    for(int i = 1; i <= m; i ++) cin >> p[i];
    vt.push_back(p[1]);
    for(int i = 2; i <= m; i ++){
        dis += f[p[i-1]][p[i]];
        if(dis > f[vt[vt.size()-1]][p[i]]){
            vt.push_back(p[i-1]);
            dis = f[vt[vt.size()-1]][p[i]];
        }
    }
    vt.push_back(p[m]);
    cout << vt.size() << endl;
    for(int i = 0; i < vt.size(); i ++)
        cout << vt[i] << " \n"[i==vt.size()-1];

    return 0;
}

你可能感兴趣的:(图论)