乘法逆元的作用

先说重点,本人认为!乘法逆元最大的作用就是,在要除以一个数,再取模时,把除法变成乘法运算,然后再取模。因为除法,比如用16/5应该是3.2,但是计算机会算成3.。。误差有没有,用double就更不用说了,数大了一定有误差,所以,有了逆元!!!!


若对于数字A,C 存在X,使A * X = 1 (mod C) ,那么称X为 A 对C的乘法逆元。

逆元的作用?让我们来看下面的例子:
12 / 4 mod 7 = ?  很显然结果是3
我们现在对于数对 (4,7), 可以知道 X = 2是 4 对7的乘法逆元即2*4=1(mod 7)
那么我们有(12 / 4) * (4 * 2 ) = (?) * (1) (mod 7)
除法被完美地转化为了乘法
理论依据:
F / A mod C = ?
如果存在 A*X = 1 (mod C)
那么2边同时乘起来,得到 F * X = ? (mod C)
成立条件
(1) 模方程 A * X = 1(mod C) 存在解
(2) A | F (F % A == 0)
以下来百度百科:
若ax=1 mod f 则称a关于模f的乘法逆元为x。也可表示为ax≡1(mod f)。
当a与f互素时,a关于模f的乘法逆元有唯一解。如果不互素,则无解。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元。
例如,求5关于模14的乘法逆元:
14=5*2+4
5=4+1
说明5与14互素,存在5关于14的乘法逆元。
1=5-4=5-(14-5*2)=5*3-14
因此,5关于模14的乘法逆元为3。

你可能感兴趣的:(数学--数论)