卡特兰数的证明及应用

Catalan数的定义令h(1)=1,Catalan数满足递归式:h(n) = h(1)*h(n-1) +h(2)*h(n-2) + ... + h(n-1)h(1),n>=2该递推关系的解为:


C_n = {2n \choose n} - {2n \choose n + 1} = \frac{1}{n+1}{2n \choose n}

问题等价于:n个1和n个0组成一2n位的2进制数,要求从左到右扫描,1的累计数不小于0的累计数,试求满足这条件的数有多少?

解答: 设P2n为这样所得的数的个数。在2n位上填入n个1的方案数为 C(n 2n)

不填1的其余n位自动填以数0。从C(n 2n)中减去不符合要求的方案数即为所求。

不合要求的数指的是从左而右扫描,出现0的累计数超过1的累计数的数。

不合要求的数的特征是从左而右扫描时,必然在某一奇数2m+1位上首先出现m+1个0的累计数,和m个1的累计数。

此 后的2(n-m)-1位上有n-m个1,n-m-1个0。如若把后面这部分2(n-m)-1位,0与1交换,使之成为n-m个0,n-m-1个1,结果得 1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n-1个1和n+1个0组成的一个排列。

反过来,任何一个 由n+1个0,n-1个1组成的2n位数,由于0的个数多2个,2n是偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面的部分,令0 和1互换,使之成为由n个0和n个1组成的2n位数。即n+1个0和n-1个1组成的2n位数,必对应于一个不合要求的数。

用上述方法建立了由n+1个0和n-1个1组成的2n位数,与由n个0和n个1组成的2n位数中从左向右扫描出现0的累计数超过1的累计数的数一一对应。

 

应用一:如果把0看成入栈操作,1看成出栈操作,相当于判断这样的01排列,合法的入栈出栈序列有多少个。

应用二:12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种

应用三:括号化问题。矩阵链乘: P=A1×A2×A3×……×An,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyckwords:

 XXXYYY   XYXXYY          XYXYXY     XXYYXY       XXYXYY
   
将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((()))     ()(())      ()()()     (())()      (()())

应用四:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

应用五:给顶节点组成二叉树的问题。
 给定N个节点,能构成多少种形状不同的二叉树?

应用六:在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。任务是键盘上输入凸多边形的边数n,求不同划分的方案数f(n)。

类似问题

一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

你可能感兴趣的:(算法思想)