为了保证state的容错性,Flink需要对state进行checkpoint。
Checkpoint是Flink实现容错机制最核心的功能,它能够根据配置周期性地基于Stream中各个Operator/task的状态来生成快照,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些快照进行恢复,从而修正因为故障带来的程序数据异常
Flink的checkpoint机制可以与(stream和state)的持久化存储交互的前提:
持久化的source,它需要支持在一定时间内重放事件。这种sources的典型例子是持久化的消息队列(比如Apache Kafka,RabbitMQ等)或文件系统(比如HDFS,S3,GFS等)
用于state的持久化存储,例如分布式文件系统(比如HDFS,S3,GFS等)
默认checkpoint功能是disabled的,想要使用的时候需要先启用
checkpoint开启之后,默认的checkPointMode是Exactly-once
checkpoint的checkPointMode有两种,Exactly-once和At-least-once
Exactly-once对于大多数应用来说是最合适的。At-least-once可能用在某些延迟超低的应用程序(始终延迟为几毫秒)
默认checkpoint功能是disabled的,想要使用的时候需要先启用
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】
env.enableCheckpointing(1000);
// 高级选项:
// 设置模式为exactly-once (这是默认值)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确保检查点之间有至少500 ms的间隔【checkpoint最小间隔】
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 同一时间只允许进行一个检查点
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】
env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint
ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION: 表示一旦Flink处理程序被cancel后,会删除Checkpoint数据,只有job执行失败的时候才会保存checkpoint
默认情况下,state会保存在taskmanager的内存中,checkpoint会存储在JobManager的内存中。
state 的store和checkpoint的位置取决于State Backend的配置
一共有三种State Backend
MemoryStateBackend
FsStateBackend
RocksDBStateBackend
MemoryStateBackend
state数据保存在java堆内存中,执行checkpoint的时候,会把state的快照数据保存到jobmanager的内存中
基于内存的Memory state backend在生产环境下不建议使用
FsStateBackend
state数据保存在taskmanager的内存中,执行checkpoint的时候,会把state的快照数据保存到配置的文件系统中
可以使用hdfs等分布式文件系统
RocksDBStateBackend
RocksDB跟上面的都略有不同,它会在本地文件系统中维护状态,state会直接写入本地rocksdb中。同时它需要配置一个远端的filesystem uri(一般是HDFS),在做checkpoint的时候,会把本地的数据直接复制到filesystem中。fail over的时候从filesystem中恢复到本地
RocksDB克服了state受内存限制的缺点,同时又能够持久化到远端文件系统中,比较适合在生产中使用
修改State Backend的两种方式
第一种:单任务调整
修改当前任务代码
env.setStateBackend(new FsStateBackend("hdfs://namenode:9000/flink/checkpoints"));
或者new MemoryStateBackend()
或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】
第二种:全局调整
state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints
注意:state.backend的值可以是下面几种:
jobmanager(MemoryStateBackend)
filesystem(FsStateBackend)
rocksdb(RocksDBStateBackend)
第一种:单任务调整
启动连接socket zzy:9001的程序
./bin/flink run -m yarn-cluster -yn 1 -yjm 1024 -ytm 1024 -c com.zzy.bigdata.flink.SocketWindowWordCountJavaCheckPoint zzy_flink_learn.jar --port 9001
[iknow@data-5-63 flink-1.7.2]$ ./bin/flink run -m yarn-cluster -yn 1 -yjm 1024 -ytm 1024 -c com.zzy.bigdata.flink.SocketWindowWordCountJavaCheckPoint zzy_flink_learn.jar --port 9001
2019-03-06 12:03:15,057 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - Found Yarn properties file under /tmp/.yarn-properties-iknow.
2019-03-06 12:03:15,057 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - Found Yarn properties file under /tmp/.yarn-properties-iknow.
2019-03-06 12:03:15,325 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at /0.0.0.0:8032
2019-03-06 12:03:15,415 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-03-06 12:03:15,415 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-03-06 12:03:15,421 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - The argument yn is deprecated in will be ignored.
2019-03-06 12:03:15,421 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - The argument yn is deprecated in will be ignored.
2019-03-06 12:03:15,511 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=1024, numberTaskManagers=1, slotsPerTaskManager=1}
2019-03-06 12:03:15,819 WARN org.apache.flink.yarn.AbstractYarnClusterDescriptor - The configuration directory ('/home/iknow/zhangzhiyong/flink-1.7.2/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them.
2019-03-06 12:03:16,386 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Submitting application master application_1551789318445_0004
2019-03-06 12:03:16,412 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1551789318445_0004
2019-03-06 12:03:16,412 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Waiting for the cluster to be allocated
2019-03-06 12:03:16,414 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Deploying cluster, current state ACCEPTED
2019-03-06 12:03:19,940 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - YARN application has been deployed successfully.
Starting execution of program
如果zzy上未开启9001端口,到jobManager的web ui上看到会报下面的错
代码里设置了checkpoint
//获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//默认checkpoint功能是disabled的,想要使用的时候需要先启用;每隔10000ms进行启动一个检查点【设置checkpoint的周期】
env.enableCheckpointing(10000);
// 高级选项:
// 设置模式为exactly-once (这是默认值)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确保检查点之间有至少500ms的间隔【checkpoint最小间隔】
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 同一时间只允许进行一个检查点
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
//ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint
//ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION: 表示一旦Flink处理程序被cancel后,会删除Checkpoint数据,只有job执行失败的时候才会保存checkpoint
//设置statebackend
//env.setStateBackend(new MemoryStateBackend());
//env.setStateBackend(new FsStateBackend("hdfs://zzy:9000/flink/checkpoints"));
//rocksDB需要引入依赖flink-statebackend-rocksdb_2.11
//env.setStateBackend(new RocksDBStateBackend("hdfs://zzy:9000/flink/checkpoints",true));
env.setStateBackend(new FsStateBackend("hdfs://192.168.5.63:9000/flink/checkpoints"));
但是JobManager的web ui上checkpoint并未触发
报错如下,应该是连接不到zzy 9001,识别不了zzy
选择监听50.63上的9001端口,如果没有nc命令,用
yum install -y nc
安装下,用下面的命令启动flink程序,采用flink on yarn的方式
./bin/flink run -m yarn-cluster -yn 1 -yjm 1024 -ytm 1024 -c com.zzy.bigdata.flink.SocketWindowWordCountJavaCheckPoint zzy_flink_learn.jar --port 9001
2019-03-06 16:00:24,680 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Deployment took more than 60 seconds. Please check if the requested resources are available in the YARN cluster
如果一直出现Deployment xxx,此时可能是集群上没有资源了,
这里杀掉application_1551789318445_0007和application_1551789318445_0008(这两台是测试机器,资源很紧张)
然后再次重启程序
注意yarn是不是successfully.的状态
Yarn上启动了应用application_1551789318445_0009
点击AM进去jobManager的web ui界面
Checkpoint的UI
可以看到每隔10s进行一次checkpoint
Hdfs上查看checkpoint数据,看到保存了最近10次的checkpoint数据
95d75e802ba1eceefeaf98636e907883跟job ID是对应的
说明flink配置文件conf/flink-conf.yaml里的配置生效了
state.checkpoints.num-retained: 10
If nothing else is configured, the system will use the MemoryStateBackend.
https://www.jianshu.com/p/3cd2ab1dd311
https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/state/state_backends.html