这次我们分析 input_preprocess.py 主要是预处理数据用于DeepLab训练或验证
使用了 core/preprocess_utils.py 的大量函数
首先 import 必要的库
import tensorflow as tf
from deeplab.core import feature_extractor
from deeplab.core import preprocess_utils
# 训练时左右反转的概率
_PROB_OF_FLIP = 0.5
函数 preprocess_image_and_label
返回 原图
处理后的图片 [crop_height, crop_width, 3]
标签 [crop_height, crop_width, 1]
def preprocess_image_and_label(image,
label,
crop_height,
crop_width,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
ignore_label=255,
is_training=True,
model_variant=None):
"""预处理图片和标签.
Args:
image: 输入图像 Input image.
label: GT分割图 Ground truth annotation label.
crop_height: The height value used to crop the image and label.
crop_width: The width value used to crop the image and label.
min_resize_value: Desired size of the smaller image side.
max_resize_value: Maximum allowed size of the larger image side.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor value.
max_scale_factor: Maximum scale factor value.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
ignore_label: The label value which will be ignored for training and
evaluation.
is_training: If the preprocessing is used for training or not.
model_variant: Model variant (string) for choosing how to mean-subtract the
images. See feature_extractor.network_map for supported model variants.
Returns:
original_image: 原始图像(resized过) Original image (could be resized).
processed_image: 处理后图像 Preprocessed image.
label: 处理过的分割图 Preprocessed ground truth segmentation label.
Raises:
ValueError: Ground truth label not provided during training.
"""
# 如果训练阶段没有label, 则报错
if is_training and label is None:
raise ValueError('During training, label must be provided.')
# model_variant ?
if model_variant is None:
tf.logging.warning('Default mean-subtraction is performed. Please specify '
'a model_variant. See feature_extractor.network_map for '
'supported model variants.')
# 保存一下原始图像
original_image = image
processed_image = tf.cast(image, tf.float32)
if label is not None:
label = tf.cast(label, tf.int32)
# Resize image and label to the desired range.
if min_resize_value is not None or max_resize_value is not None:
# 调用core/preprocess_utils.resize_to_range函数
[processed_image, label] = (
preprocess_utils.resize_to_range(
image=processed_image,
label=label,
min_size=min_resize_value,
max_size=max_resize_value,
factor=resize_factor,
align_corners=True))
# 原始图更换为resized后的图片
original_image = tf.identity(processed_image)
# 随机放缩数据增强 调用core/preprocess_utils中的两个函数
scale = preprocess_utils.get_random_scale(
min_scale_factor, max_scale_factor, scale_factor_step_size)
processed_image, label = preprocess_utils.randomly_scale_image_and_label(
processed_image, label, scale)
processed_image.set_shape([None, None, 3])
# Pad图片和Label到指定大小 [crop_height, crop_width]
image_shape = tf.shape(processed_image)
image_height = image_shape[0]
image_width = image_shape[1]
target_height = image_height + tf.maximum(crop_height - image_height, 0)
target_width = image_width + tf.maximum(crop_width - image_width, 0)
# 用图片均值进行pad图片 core/preprocess_utils
mean_pixel = tf.reshape(
feature_extractor.mean_pixel(model_variant), [1, 1, 3])
processed_image = preprocess_utils.pad_to_bounding_box(
processed_image, 0, 0, target_height, target_width, mean_pixel)
if label is not None:
label = preprocess_utils.pad_to_bounding_box(
label, 0, 0, target_height, target_width, ignore_label)
# 随机裁剪 preprocess_utils.random_crop
if is_training and label is not None:
processed_image, label = preprocess_utils.random_crop(
[processed_image, label], crop_height, crop_width)
processed_image.set_shape([crop_height, crop_width, 3])
if label is not None:
label.set_shape([crop_height, crop_width, 1])
# 如果是训练阶段,随机翻转
if is_training:
# Randomly left-right flip the image and label.
processed_image, label, _ = preprocess_utils.flip_dim(
[processed_image, label], _PROB_OF_FLIP, dim=1)
return original_image, processed_image, label