图论练习题:【BZOJ2753 || SCOI2012】滑雪与时间胶囊

来源:http://www.lydsy.com/JudgeOnline/problem.php?id=2753

Description

a180285非常喜欢滑雪。他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道 之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi。a180285 能从景点i 滑到景点j 当且仅当存在一条i 和j 之间的边,且i 的高度不小于j。  与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅 仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。 这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是 a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间 之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。  现在,a180285站在1号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间
胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前 提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

Input

输入的第一行是两个整数N,M。
接下来1行有N个整数Hi,分别表示每个景点的高度。
接下来M行,表示各个景点之间轨道分布的情况。每行3个整数,Ui,Vi,Ki。表示
编号为Ui的景点和编号为Vi的景点之间有一条长度为Ki的轨道。

Output

 
输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。 

Sample Input


3 3
3 2 1
1 2 1
2 3 1
1 3 10

Sample Output

3 2

HINT

【数据范围】 

    对于30%的数据,保证 1<=N<=2000 

    对于100%的数据,保证 1<=N<=100000 

对于所有的数据,保证 1<=M<=1000000,1<=Hi<=1000000000,1<=Ki<=1000000000。


你可能感兴趣的:(图论)