在自然语言领域,上述方法却不可行:文本是不定长度的。文本表示成计算机能够运算的数字或向量的方法一般称为词嵌入(Word Embedding)方法。词嵌入将不定长的文本转换到定长的空间内,是文本分类的第一步。
这里的One-hot与数据挖掘任务中的操作是一致的,即将每一个单词使用一个离散的向量表示。具体将每个字/词编码一个索引,然后根据索引进行赋值。
One-hot表示方法的例子如下:
句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
首先对所有句子的字进行索引,即将每个字确定一个编号:
{
‘我’: 1, ‘爱’: 2, ‘北’: 3, ‘京’: 4, ‘天’: 5,
‘安’: 6, ‘门’: 7, ‘喜’: 8, ‘欢’: 9, ‘上’: 10, ‘海’: 11
}
在这里共包括11个字,因此每个字可以转换为一个11维度稀疏向量:
我:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
爱:[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
…
海:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
Bag of Words(词袋表示),也称为Count Vectors,每个文档的字/词可以使用其出现次数来进行表示。
句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
直接统计每个字出现的次数,并进行赋值:
句子1:我 爱 北 京 天 安 门
转换为 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
句子2:我 喜 欢 上 海
转换为 [1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
在sklearn中可以直接CountVectorizer来实现这一步骤:
from sklearn.feature_extraction.text import CountVectorizer
corpus = [
'This is the first document.',
'This document is the second document.',
'And this is the third one.',
'Is this the first document?',
]
vectorizer = CountVectorizer()
vectorizer.fit_transform(corpus).toarray()
N-gram与Count Vectors类似,不过加入了相邻单词组合成为新的单词,并进行计数。
如果N取值为2,则句子1和句子2就变为:
句子1:我爱 爱北 北京 京天 天安 安门
句子2:我喜 喜欢 欢上 上海
TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。
TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score
train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=15000)
vectorizer = CountVectorizer(max_features=3000)
train_test = vectorizer.fit_transform(train_df['text'])
clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])
val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score
train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=15000)
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)
train_test = tfidf.fit_transform(train_df['text'])
clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])
val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
1、尝试改变TF-IDF的参数,并验证精度
当前测得(1,4),5000 最高
2、尝试使用其他机器学习模型,完成训练和验证
更换分类器,TF-IDF+LogisticRegression
from sklearn.linear_model import LogisticRegression
#逻辑回归随机梯度下降
clf = LogisticRegression(C=2.0)
clf.fit(train_test[:10000], train_df['label'].values[:10000])
val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
from sklearn.linear_model import SGDClassifier
#默认为’hinge’即SVM
clf = SGDClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])
val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))