- 摆(行列式、杜教筛)
dygxczn
线性代数
有一个n×nn\timesnn×n的矩阵AAA,满足:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi\midj\\C&\text{otherwise}\end{cases}Ai,j=⎩⎨⎧10Ci=ji=j∧i∣jotherwise求det(A)\det(A)det(A)。答案模998244353
- 一些些筛子(埃氏筛、线性筛、杜教筛)
溶解不讲嘿
数论算法c++推荐算法学习笔记
有时我们需要求出一个范围内的质数,或者要计算一些积性函数的值,但往往题目无法承受直接判断质数、直接求函数值的时间复杂度,这时我们就可以用筛子了入门级:埃氏筛假设当前有一块板,板上写着2∼n2\simn2∼n的数,如果我们想快速找出质数,那么我们可以考虑标记那些合数,让划了斜线的数表示合数,于是我们从左往右依次看,当遇到一个质数时,就把后面他的所有的倍数都划上斜线,而这就是埃氏筛的原理for(int
- 杜教筛和狄利克雷卷积
yyf525
数论c++
零、前置知识1.积性函数积性函数的定义:若(a,b)=1(a,b)=1(a,b)=1,则f(a⋅b)=f(a)⋅f(b)f(a\cdotb)=f(a)\cdotf(b)f(a⋅b)=f(a)⋅f(b)。常见的积性函数有:φ\varphiφ函数,μ\muμ函数等。积性函数有以下性质:若f(x),g(x)f(x),g(x)f(x),g(x)均为积性函数,则h(x)=f(x)⋅g(x)h(x)=f(x)
- 杜教筛练习题
tanjunming2020
题解题解c++
前置知识:杜教筛题目大意给定nnn,求∑i=1n∑j=1n∑k=1nϕ(gcd(i,j,k))\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^n\phi(\gcd(i,j,k))i=1∑nj=1∑nk=1∑nϕ(gcd(i,j,k))输出其结果模202309232023092320230923后的值。1≤n≤1091\leqn\le
- 总结
asddzgn0704
总结
文章目录一、常见错误代码细节其它二、一些技巧一、动态规划DP设计DP优化二、字符串三、数学数论等计数四、博弈五、树上问题六、图论七、网络流八、数据结构九、其它三、一些公式组合数二项式反演min/max容斥扩展单位根反演EXCRT杜教筛四、一些模板一、常见错误代码细节当两个特别大的数相乘后取模时,要使用快速乘。注意:使用longlong时,要检查传参是否传int。注意:不要3数连乘不要int×int
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- 杜教筛的小结
罚时大师月色
c++
总所周知,杜教筛是一个可以快速求积性函数前缀和的工具,为了快速理解杜教筛,自己给自己写了一个文章快速理解。它可以在O(n2/3)的复杂度快速求出某个积性函数的前缀和。例如,我们想要知道fff函数的前缀和,我们可以去找一个ggg函数,可以O(1)求出前缀和的两个函数ggg函数,f∗gf*gf∗g函数。f∗gf*gf∗g函数中间的乘号代表迪利克雷卷积。常见的迪利克雷卷积有μ∗I=ϵμ*I=ϵμ∗I=ϵ
- 【SSL 2402】最简根式(杜教筛)(整除分块)
SSL_TJH
#数学或数论杜教筛整除分块
最简根式题目链接:SSL2402题目大意多次询问,每次给你一个n,问你有多少个a,b=2使得任意正整数x都有ax+b的k次开根不是最简根式。思路考虑对应a,ba,ba,b会有的性质。那注意到要任意整数都有不是最简根式,而不是最简根式代表有一个因子是xkx^kxk(x⩾2,k⩾2x\geqslant2,k\geqslant2x⩾2,k⩾2)那注意到有x3x^3x3一定有x2x^2x2(其他也类似),
- 思维题练习专场-数学篇
weixin_30718391
数据结构与算法
转载请注明地址:http://www.cnblogs.com/LadyLex/p/8885799.html太可怕了终于还是来做数学了……之前只是看过一点点反演相关的东西之前的总结:杜教筛反演提升的目标是思维,尤其是找到关键性质作为突破口的能力。不可能找到一种解决所有问题的通式,尤其是在数学这里……所以培养观察分析关键性质的能力就尤为重要这篇博客也将重点记录每道题的突破关键点……希望自己在2天时间里
- 洛谷P3768 简单的数学题
tanjunming2020
题解c++
洛谷P3768简单的数学题题目大意给出nnn和质数ppp,求(∑i=1n∑j=1nijgcd(i,j)) mod p\left(\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)\right)\bmodp(i=1∑nj=1∑nijgcd(i,j))modp题解前置知识:杜教筛原式为∑i=1n∑j=1nijgcd(i,j)\sum_{i=1}^n\sum_{j=1}^nij\
- [洛谷 P6055] [RC-02] GCD (莫比乌斯反演 杜教筛)
凌乱之风
数论题算法数论杜教筛
题意求∑i=1n∑j=1n∑p=1⌊nj⌋∑q=1⌊nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p=1}^{\lfloor\frac{n}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{n}{j}\rfloor}[\gcd(i,j)=1][\gcd(p,q)=1]i=1∑nj=1∑np=1∑⌊
- 洛谷P6055 [RC-02] GCD
tanjunming2020
题解c++
洛谷P6055[RC-02]GCD题解前置知识:杜教筛题意即求∑i=1N∑j=1N∑p=1⌊Nj⌋∑q=1⌊Nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\lfloor\frac{N}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{N}{j}\rfloor}[\gcd(i,j)=1][\gc
- 杜教筛学习
tanjunming2020
数论算法c++算法
前置知识:狄利克雷卷积杜教筛杜教筛是快速求某些积性函数的前缀和的一种方法,时间复杂度一般能达到O(n23)O(n^{\frac23})O(n32)。设f,gf,gf,g为积性函数,F,GF,GF,G分别是f,gf,gf,g的前缀和。hhh为f,gf,gf,g的狄利克雷卷积,HHH为hhh的前缀和。我们要求FFF,但FFF不好求,而G,HG,HG,H比较好求,我们可以通过G,HG,HG,H得到FFF
- 洛谷P4213 【模板】杜教筛
tanjunming2020
题解c++
前置知识:杜教筛洛谷P4213【模板】杜教筛求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i)和∑i=1nμ(i)\sum\limits_{i=1}^n\mu(i)i=1∑nμ(i),其中1≤n≤1091\leqn\leq10^91≤n≤109。先求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i),我们知道ϕ∗I=Id
- 积性函数求前缀和
Drin_E
数论杜教筛
积性函数定义若函数f满足a,b互质有f(a*b)=f(a)*f(b),我们则称f是积性函数。常见的比如欧拉函数,莫比乌斯函数,都属于积性函数。积性函数求前缀和线性筛法,利用积性函数的积性,筛素数同时可以计算积性函数。然而有些问题要求低于线性的复杂度。杜教筛同样利用积性函数的性质。举常见的莫比乌斯函数为例。求∑ni=1μ(i)(1=2于是有s(n)=1-∑ni=2∑⌊ni⌋d=1μ(d)(这里的i表
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
躲不过这哀伤
数据结构与算法
写这篇博客的时候有点激动为了让自己不颓还是写写日记存存模板Nov.82016今天早上买了两个蛋挞吃了一个然后就做数论(前天晚上还是想放弃数论但是昨天被数论虐了wocnoip模拟赛出了道杜教筛)然后白天就脑补了几道积性函数把例题过了一遍Submit_Time1696174wohenshuai2154Accepted245432kb10556msC++/Edit1152B2016-11-0816:50
- 洛谷P4213 杜教筛模板
stdforces
算法
[模板]杜教筛:计算∑i=1nμ(i)∑i=1nϕ(i)\sum_{i=1}^{n}\mu(i)\\\sum_{i=1}^{n}\phi(i)i=1∑nμ(i)i=1∑nϕ(i)Solution:杜教筛是一种能在O(n23)O(n^{\frac{2}{3}})O(n32)时间复杂度下计算积性函数的前缀和的算法,假设我们需要求积性函数f(x)f(x)f(x)的前nnn项和S(n)=∑i=1nf(i)
- 杜教筛【莫比乌斯前缀和,欧拉函数前缀和】推导与模板【一千五百字】
秦小咩
数论进阶数论莫比乌斯反演杜教筛
下图给出杜教筛详细推导过程,前置知识有积性函数和莫比乌斯反演。杜教筛是一种优秀的求积性函数前缀和算法,其时间复杂度受预处理数组的影响,一般开到2/3次幂大小,可使复杂度达到较为优秀的程度。杜教筛的时间复杂度还要取决于预处理数组的大小,将预处理前缀和数组处理到n^(2/3)大小会使杜教筛时间复杂度缩短至O(n^(2/3)),否则会超时【模板】杜教筛(Sum)-洛谷#include#include#i
- 牛客P21546 莫比乌斯反演+杜教筛
stdforces
算法
题意:给出n,k,l,rn,k,l,rn,k,l,r,从区间[l,r][l,r][l,r]内取出nnn个数,并且他们的最大公约数为kkk,有多少种取法?这nnn个数可以有相等的Solution:即计算∑a1=lr∑a2=lr...∑an=lr[gcd(a1,a2,...,an)=k]\sum_{a_{1}=l}^{r}\sum_{a_{2}=l}^{r}...\sum_{a_{n}=l}^{r}[
- 【NOI模拟赛】摆(线性代数,杜教筛)
DD(XYX)
数学线性代数算法亚线性筛矩阵开摆
题面6s,1024mb我是XYX,我擅长摆。我在摆大烂的时候看到一个n×nn\timesnn×n的矩阵AAA:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi|j\\C&{\rmotherwise}\end{cases}Ai,j=⎩⎪⎨⎪⎧10Ci=ji=j∧i∣jotherwise现在我想知道AAA
- ABC239Ex Dice Product 2
andyc_03
做题记录
A题面分析我们设fif_ifi表示当限制m为i的时候期望步数大小那么可以得到f0=0f_0=0f0=0,fi=1+1n∑j=1nf⌊ij⌋f_i=1+\frac{1}{n}\sum_{j=1}^nf_{\lfloor\frac{i}{j}\rfloor}fi=1+n1∑j=1nf⌊ji⌋通过记忆化搜索可以得出答案复杂度为O(n34)O(n^{\frac{3}{4}})O(n43),证明方式和杜教筛
- 2018 ACM 四川省赛 G. Grisaia(超棒的杜教筛好题)
繁凡さん
数学-杜教筛数学-莫比乌斯反演
整理的算法模板合集:ACM模板点我看算法全家桶系列!!!实际上是一个全新的精炼模板整合计划G.Grisaia(灰色的果实好耶《灰色的果实(TheFruitofGrisaia)》)Weblinkhttps://www.oj.swust.edu.cn/problem/show/2810Problem计算:ans=∑i=1n∑j=1i(nmod(i×j))ans=\sum^n_{i=1}\sum^i_{
- 【算法讲12:杜教筛入门】亚线性时间复杂度 求 积性函数前缀和
溢流眼泪
【算法/知识点浅谈】算法数论杜教筛
【算法讲12:杜教筛入门】前置知识引入思路对于φ\varphiφ的杜教筛对于μ\muμ的杜教筛核心代码例子核心代码前置知识积性函数与狄利克雷卷积【算法讲7:积性函数(下)】数论分块【算法讲6:数论分块(整除分块)】莫比乌斯反演与欧拉筛【算法讲8:莫比乌斯函数及其反演(理论部分)|欧拉筛】记忆化搜索。应该学过搜索的人都会的吧…引入【问题描述】【模板】杜教筛|洛谷P4213给定nnn,求∑i=1nφ(
- 模板 - min25筛
weixin_30882895
好像在某些情况下杜教筛会遇到瓶颈,先看着。暑假学一些和队友交错的知识的同时开这个大坑。2019/7/30求一个前缀和$\sum\limits_{i=1}^nf(i)$,其中\(f(x)\)是积性函数,且\(f(p^k)\)是一个关于\(p\)的低次多项式。#include#include#include#include#definelllonglongusingnamespacestd;const
- Min_25筛
weixin_30371469
听说这个东西能给予人力量那就来学一学吧功能就是筛一个积性函数\(f(i)\)的前缀和Min_25筛好像是最近才流行起来的筛法,复杂度是非常神奇的\(O(\frac{n^{\frac{3}{4}}}{logn})\)和杜教筛一样,使用这个筛法的也有一定要求,就是\(f(p^c)\)需要在\(O(1)\)求出来看看这个非常力量的筛法我们要求的东西是\[\sum_{i=1}^nf(i)\]我们先定义一个
- 洛谷 P2257 YY的GCD 莫比乌斯反演
一只叫橘子的猫
数学----莫比乌斯反演
P2257YY的GCD学习数论之莫比乌斯反演、杜教筛推荐:peng-ym推理:令:我们要求的是:令显然F(x)很容易求:我们反演一下:假设n#definelllonglongusingnamespacestd;constintmaxn=1e7+10;intprim[maxn],vis[maxn],mu[maxn],cnt;llg[maxn];voidget_mu(intn){mu[1]=1;for
- BZOJ 4176 [莫比乌斯反演][杜教筛]
Vectorxj
Description求∑i=1n∑j=1nd(ij)Solution通过陈老师r老师等式可以的得到该式子就等于∑i=1n∑j=1n⌊ni⌋⌊nj⌋[(i,j)=1]一波反演以后就得到∑d=1nμ(d)(∑i=1⌊nd⌋⌊nid⌋)2发现后面那个东西的取值只有O(n√)种,只需要枚举后面的值,前面的用杜教筛求就好了,时间复杂度为O(n34)。#include#include#include#inc
- kuangbin带你飞——基础数论专题习题总结
木每立兄豪
数论算法学习总结kuangbin带你飞数论
前一段时间做了kuangbin带你飞基础数论专题部分,可看了不少的相关的资料,在这里也来做一个总结。由于数论方面的知识太多了,有的知识我也不会,就不说知识点了,有关具体的知识可以参考刘汝佳紫书,白书上部分的专题,也可以看数论及应用(哈工大出版),这里只是对专题习题(加上最近网络赛的简单数论题,关于各种min25筛,杜教筛等等还没学)的汇总,关于数论的板子等学完计算几何和组合数学之后找个时间再汇总一
- 2019CCPC网络赛 HD6707——杜教筛
dianshu1593
题意求$f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)$,$1\len,a,b\le10^9$,共有$T$组测试,其中只有10组的$n$大于$10^6$.分析首先,当$i,j$互质,$a,b$互质时,有$gcd(i^a-j^a,i^b-j^b)=i-j$(证明见链接),也可以打表猜一猜嘛。可以推
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
weixin_30823833
首先题目中给出的代码打错了,少了个等于号,应该是G=0;for(i=1;i#includeusingnamespacestd;constlonglongN=1000005,m=1000000,inv2=500000004,inv4=250000002,inv6=166666668,mod=1e9+7;longlongn,phi[N],q[N],tot,ans,ha[N];boolv[N];long
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p