- 摆(行列式、杜教筛)
dygxczn
线性代数
有一个n×nn\timesnn×n的矩阵AAA,满足:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi\midj\\C&\text{otherwise}\end{cases}Ai,j=⎩⎨⎧10Ci=ji=j∧i∣jotherwise求det(A)\det(A)det(A)。答案模998244353
- 一些些筛子(埃氏筛、线性筛、杜教筛)
溶解不讲嘿
数论算法c++推荐算法学习笔记
有时我们需要求出一个范围内的质数,或者要计算一些积性函数的值,但往往题目无法承受直接判断质数、直接求函数值的时间复杂度,这时我们就可以用筛子了入门级:埃氏筛假设当前有一块板,板上写着2∼n2\simn2∼n的数,如果我们想快速找出质数,那么我们可以考虑标记那些合数,让划了斜线的数表示合数,于是我们从左往右依次看,当遇到一个质数时,就把后面他的所有的倍数都划上斜线,而这就是埃氏筛的原理for(int
- 杜教筛和狄利克雷卷积
yyf525
数论c++
零、前置知识1.积性函数积性函数的定义:若(a,b)=1(a,b)=1(a,b)=1,则f(a⋅b)=f(a)⋅f(b)f(a\cdotb)=f(a)\cdotf(b)f(a⋅b)=f(a)⋅f(b)。常见的积性函数有:φ\varphiφ函数,μ\muμ函数等。积性函数有以下性质:若f(x),g(x)f(x),g(x)f(x),g(x)均为积性函数,则h(x)=f(x)⋅g(x)h(x)=f(x)
- 杜教筛练习题
tanjunming2020
题解题解c++
前置知识:杜教筛题目大意给定nnn,求∑i=1n∑j=1n∑k=1nϕ(gcd(i,j,k))\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^n\phi(\gcd(i,j,k))i=1∑nj=1∑nk=1∑nϕ(gcd(i,j,k))输出其结果模202309232023092320230923后的值。1≤n≤1091\leqn\le
- 总结
asddzgn0704
总结
文章目录一、常见错误代码细节其它二、一些技巧一、动态规划DP设计DP优化二、字符串三、数学数论等计数四、博弈五、树上问题六、图论七、网络流八、数据结构九、其它三、一些公式组合数二项式反演min/max容斥扩展单位根反演EXCRT杜教筛四、一些模板一、常见错误代码细节当两个特别大的数相乘后取模时,要使用快速乘。注意:使用longlong时,要检查传参是否传int。注意:不要3数连乘不要int×int
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- 杜教筛的小结
罚时大师月色
c++
总所周知,杜教筛是一个可以快速求积性函数前缀和的工具,为了快速理解杜教筛,自己给自己写了一个文章快速理解。它可以在O(n2/3)的复杂度快速求出某个积性函数的前缀和。例如,我们想要知道fff函数的前缀和,我们可以去找一个ggg函数,可以O(1)求出前缀和的两个函数ggg函数,f∗gf*gf∗g函数。f∗gf*gf∗g函数中间的乘号代表迪利克雷卷积。常见的迪利克雷卷积有μ∗I=ϵμ*I=ϵμ∗I=ϵ
- 【SSL 2402】最简根式(杜教筛)(整除分块)
SSL_TJH
#数学或数论杜教筛整除分块
最简根式题目链接:SSL2402题目大意多次询问,每次给你一个n,问你有多少个a,b=2使得任意正整数x都有ax+b的k次开根不是最简根式。思路考虑对应a,ba,ba,b会有的性质。那注意到要任意整数都有不是最简根式,而不是最简根式代表有一个因子是xkx^kxk(x⩾2,k⩾2x\geqslant2,k\geqslant2x⩾2,k⩾2)那注意到有x3x^3x3一定有x2x^2x2(其他也类似),
- 思维题练习专场-数学篇
weixin_30718391
数据结构与算法
转载请注明地址:http://www.cnblogs.com/LadyLex/p/8885799.html太可怕了终于还是来做数学了……之前只是看过一点点反演相关的东西之前的总结:杜教筛反演提升的目标是思维,尤其是找到关键性质作为突破口的能力。不可能找到一种解决所有问题的通式,尤其是在数学这里……所以培养观察分析关键性质的能力就尤为重要这篇博客也将重点记录每道题的突破关键点……希望自己在2天时间里
- 洛谷P3768 简单的数学题
tanjunming2020
题解c++
洛谷P3768简单的数学题题目大意给出nnn和质数ppp,求(∑i=1n∑j=1nijgcd(i,j)) mod p\left(\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)\right)\bmodp(i=1∑nj=1∑nijgcd(i,j))modp题解前置知识:杜教筛原式为∑i=1n∑j=1nijgcd(i,j)\sum_{i=1}^n\sum_{j=1}^nij\
- [洛谷 P6055] [RC-02] GCD (莫比乌斯反演 杜教筛)
凌乱之风
数论题算法数论杜教筛
题意求∑i=1n∑j=1n∑p=1⌊nj⌋∑q=1⌊nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p=1}^{\lfloor\frac{n}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{n}{j}\rfloor}[\gcd(i,j)=1][\gcd(p,q)=1]i=1∑nj=1∑np=1∑⌊
- 洛谷P6055 [RC-02] GCD
tanjunming2020
题解c++
洛谷P6055[RC-02]GCD题解前置知识:杜教筛题意即求∑i=1N∑j=1N∑p=1⌊Nj⌋∑q=1⌊Nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\lfloor\frac{N}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{N}{j}\rfloor}[\gcd(i,j)=1][\gc
- 杜教筛学习
tanjunming2020
数论算法c++算法
前置知识:狄利克雷卷积杜教筛杜教筛是快速求某些积性函数的前缀和的一种方法,时间复杂度一般能达到O(n23)O(n^{\frac23})O(n32)。设f,gf,gf,g为积性函数,F,GF,GF,G分别是f,gf,gf,g的前缀和。hhh为f,gf,gf,g的狄利克雷卷积,HHH为hhh的前缀和。我们要求FFF,但FFF不好求,而G,HG,HG,H比较好求,我们可以通过G,HG,HG,H得到FFF
- 洛谷P4213 【模板】杜教筛
tanjunming2020
题解c++
前置知识:杜教筛洛谷P4213【模板】杜教筛求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i)和∑i=1nμ(i)\sum\limits_{i=1}^n\mu(i)i=1∑nμ(i),其中1≤n≤1091\leqn\leq10^91≤n≤109。先求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i),我们知道ϕ∗I=Id
- 积性函数求前缀和
Drin_E
数论杜教筛
积性函数定义若函数f满足a,b互质有f(a*b)=f(a)*f(b),我们则称f是积性函数。常见的比如欧拉函数,莫比乌斯函数,都属于积性函数。积性函数求前缀和线性筛法,利用积性函数的积性,筛素数同时可以计算积性函数。然而有些问题要求低于线性的复杂度。杜教筛同样利用积性函数的性质。举常见的莫比乌斯函数为例。求∑ni=1μ(i)(1=2于是有s(n)=1-∑ni=2∑⌊ni⌋d=1μ(d)(这里的i表
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
躲不过这哀伤
数据结构与算法
写这篇博客的时候有点激动为了让自己不颓还是写写日记存存模板Nov.82016今天早上买了两个蛋挞吃了一个然后就做数论(前天晚上还是想放弃数论但是昨天被数论虐了wocnoip模拟赛出了道杜教筛)然后白天就脑补了几道积性函数把例题过了一遍Submit_Time1696174wohenshuai2154Accepted245432kb10556msC++/Edit1152B2016-11-0816:50
- 洛谷P4213 杜教筛模板
stdforces
算法
[模板]杜教筛:计算∑i=1nμ(i)∑i=1nϕ(i)\sum_{i=1}^{n}\mu(i)\\\sum_{i=1}^{n}\phi(i)i=1∑nμ(i)i=1∑nϕ(i)Solution:杜教筛是一种能在O(n23)O(n^{\frac{2}{3}})O(n32)时间复杂度下计算积性函数的前缀和的算法,假设我们需要求积性函数f(x)f(x)f(x)的前nnn项和S(n)=∑i=1nf(i)
- 杜教筛【莫比乌斯前缀和,欧拉函数前缀和】推导与模板【一千五百字】
秦小咩
数论进阶数论莫比乌斯反演杜教筛
下图给出杜教筛详细推导过程,前置知识有积性函数和莫比乌斯反演。杜教筛是一种优秀的求积性函数前缀和算法,其时间复杂度受预处理数组的影响,一般开到2/3次幂大小,可使复杂度达到较为优秀的程度。杜教筛的时间复杂度还要取决于预处理数组的大小,将预处理前缀和数组处理到n^(2/3)大小会使杜教筛时间复杂度缩短至O(n^(2/3)),否则会超时【模板】杜教筛(Sum)-洛谷#include#include#i
- 牛客P21546 莫比乌斯反演+杜教筛
stdforces
算法
题意:给出n,k,l,rn,k,l,rn,k,l,r,从区间[l,r][l,r][l,r]内取出nnn个数,并且他们的最大公约数为kkk,有多少种取法?这nnn个数可以有相等的Solution:即计算∑a1=lr∑a2=lr...∑an=lr[gcd(a1,a2,...,an)=k]\sum_{a_{1}=l}^{r}\sum_{a_{2}=l}^{r}...\sum_{a_{n}=l}^{r}[
- 【NOI模拟赛】摆(线性代数,杜教筛)
DD(XYX)
数学线性代数算法亚线性筛矩阵开摆
题面6s,1024mb我是XYX,我擅长摆。我在摆大烂的时候看到一个n×nn\timesnn×n的矩阵AAA:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi|j\\C&{\rmotherwise}\end{cases}Ai,j=⎩⎪⎨⎪⎧10Ci=ji=j∧i∣jotherwise现在我想知道AAA
- ABC239Ex Dice Product 2
andyc_03
做题记录
A题面分析我们设fif_ifi表示当限制m为i的时候期望步数大小那么可以得到f0=0f_0=0f0=0,fi=1+1n∑j=1nf⌊ij⌋f_i=1+\frac{1}{n}\sum_{j=1}^nf_{\lfloor\frac{i}{j}\rfloor}fi=1+n1∑j=1nf⌊ji⌋通过记忆化搜索可以得出答案复杂度为O(n34)O(n^{\frac{3}{4}})O(n43),证明方式和杜教筛
- 2018 ACM 四川省赛 G. Grisaia(超棒的杜教筛好题)
繁凡さん
数学-杜教筛数学-莫比乌斯反演
整理的算法模板合集:ACM模板点我看算法全家桶系列!!!实际上是一个全新的精炼模板整合计划G.Grisaia(灰色的果实好耶《灰色的果实(TheFruitofGrisaia)》)Weblinkhttps://www.oj.swust.edu.cn/problem/show/2810Problem计算:ans=∑i=1n∑j=1i(nmod(i×j))ans=\sum^n_{i=1}\sum^i_{
- 【算法讲12:杜教筛入门】亚线性时间复杂度 求 积性函数前缀和
溢流眼泪
【算法/知识点浅谈】算法数论杜教筛
【算法讲12:杜教筛入门】前置知识引入思路对于φ\varphiφ的杜教筛对于μ\muμ的杜教筛核心代码例子核心代码前置知识积性函数与狄利克雷卷积【算法讲7:积性函数(下)】数论分块【算法讲6:数论分块(整除分块)】莫比乌斯反演与欧拉筛【算法讲8:莫比乌斯函数及其反演(理论部分)|欧拉筛】记忆化搜索。应该学过搜索的人都会的吧…引入【问题描述】【模板】杜教筛|洛谷P4213给定nnn,求∑i=1nφ(
- 模板 - min25筛
weixin_30882895
好像在某些情况下杜教筛会遇到瓶颈,先看着。暑假学一些和队友交错的知识的同时开这个大坑。2019/7/30求一个前缀和$\sum\limits_{i=1}^nf(i)$,其中\(f(x)\)是积性函数,且\(f(p^k)\)是一个关于\(p\)的低次多项式。#include#include#include#include#definelllonglongusingnamespacestd;const
- Min_25筛
weixin_30371469
听说这个东西能给予人力量那就来学一学吧功能就是筛一个积性函数\(f(i)\)的前缀和Min_25筛好像是最近才流行起来的筛法,复杂度是非常神奇的\(O(\frac{n^{\frac{3}{4}}}{logn})\)和杜教筛一样,使用这个筛法的也有一定要求,就是\(f(p^c)\)需要在\(O(1)\)求出来看看这个非常力量的筛法我们要求的东西是\[\sum_{i=1}^nf(i)\]我们先定义一个
- 洛谷 P2257 YY的GCD 莫比乌斯反演
一只叫橘子的猫
数学----莫比乌斯反演
P2257YY的GCD学习数论之莫比乌斯反演、杜教筛推荐:peng-ym推理:令:我们要求的是:令显然F(x)很容易求:我们反演一下:假设n#definelllonglongusingnamespacestd;constintmaxn=1e7+10;intprim[maxn],vis[maxn],mu[maxn],cnt;llg[maxn];voidget_mu(intn){mu[1]=1;for
- BZOJ 4176 [莫比乌斯反演][杜教筛]
Vectorxj
Description求∑i=1n∑j=1nd(ij)Solution通过陈老师r老师等式可以的得到该式子就等于∑i=1n∑j=1n⌊ni⌋⌊nj⌋[(i,j)=1]一波反演以后就得到∑d=1nμ(d)(∑i=1⌊nd⌋⌊nid⌋)2发现后面那个东西的取值只有O(n√)种,只需要枚举后面的值,前面的用杜教筛求就好了,时间复杂度为O(n34)。#include#include#include#inc
- kuangbin带你飞——基础数论专题习题总结
木每立兄豪
数论算法学习总结kuangbin带你飞数论
前一段时间做了kuangbin带你飞基础数论专题部分,可看了不少的相关的资料,在这里也来做一个总结。由于数论方面的知识太多了,有的知识我也不会,就不说知识点了,有关具体的知识可以参考刘汝佳紫书,白书上部分的专题,也可以看数论及应用(哈工大出版),这里只是对专题习题(加上最近网络赛的简单数论题,关于各种min25筛,杜教筛等等还没学)的汇总,关于数论的板子等学完计算几何和组合数学之后找个时间再汇总一
- 2019CCPC网络赛 HD6707——杜教筛
dianshu1593
题意求$f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)$,$1\len,a,b\le10^9$,共有$T$组测试,其中只有10组的$n$大于$10^6$.分析首先,当$i,j$互质,$a,b$互质时,有$gcd(i^a-j^a,i^b-j^b)=i-j$(证明见链接),也可以打表猜一猜嘛。可以推
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
weixin_30823833
首先题目中给出的代码打错了,少了个等于号,应该是G=0;for(i=1;i#includeusingnamespacestd;constlonglongN=1000005,m=1000000,inv2=500000004,inv4=250000002,inv6=166666668,mod=1e9+7;longlongn,phi[N],q[N],tot,ans,ha[N];boolv[N];long
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持