- 数学建模之入门篇
沐硕
计算机专业基础数学建模软件工程
目录什么是数学建模建模、编程、写作一、初步建模选择模型二、进阶熟练掌握1.数学模型线性规划图与网络模型及方法插值与拟合灰色预测动态规划层次分析法AHP整数规划目标规划模型偏最小二乘回归微分方程模型博弈论/对策论排队论模型存储论模糊数学模型2.统计模型3.机器学习/数据挖掘模型4.深度学习模型三.模型求解与优化一、团队篇,组建你的团队二、工具篇,提高你的效率三、建模篇,怎么建模三、零碎的知识点篇如何
- floyd matlab 无向图 最短路径 数学建模_在数学建模中常用的方法
李培智
floydmatlab无向图最短路径数学建模
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 全国大学生数学建模竞赛历年赛题及优秀论文(链接见ping论)
爱建模的小鹿
算法回归matlab
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 【Matlab】-- 基于MATLAB的美赛常用多种算法
电科_银尘
Matlab程序matlab算法数学建模
文章目录文章目录01内容概要02各种算法基本原理03部分代码04代码下载01内容概要本资料集合了多种数学建模和优化算法的常用代码资源,旨在为参与美国大学生数学建模竞赛(MCM/ICM,简称美赛)的参赛者提供实用的编程工具和算法实现。这些算法包括BP神经网络、CT图像重建、Floyd算法、Topsis算法、层次分析法、分支定界法、灰色预测、粒子群算法、模拟退火算法(特别适用于TSP和背包问题)、人口
- 【数学建模】层次分析法(AHP)详解及其应用
烟锁池塘柳0
数学建模数学建模
层次分析法(AHP)详解及其应用引言在现实生活和工作中,我们经常面临复杂的决策问题,这些问题通常涉及多个评价准则,且各准则之间可能存在相互影响。如何在这些复杂因素中做出合理的决策?层次分析法(AnalyticHierarchyProcess,AHP)作为一种系统、灵活的多准则决策方法,为我们提供了科学的决策工具。文章目录层次分析法(AHP)详解及其应用引言什么是层次分析法?层次分析法的基本原理层次
- 【数学建模】一致矩阵的应用及其在层次分析法(AHP)中的性质
烟锁池塘柳0
数学建模数学建模
一致矩阵在层次分析法(AHP)中的应用与性质在层次分析法(AHP)中,一致矩阵是判断矩阵的一种理想状态,它反映了决策者判断的完全合理性和一致性,也就是为了避免决策者认为“A比B重要,B比C重要,但是C又比A重要”的矛盾。本文将详细介绍一致矩阵的定义、性质及其在AHP中的重要意义。关于层次分析法(AHP)的介绍,可以参考:【数学建模】层次分析法(AHP)详解及其应用。一、一致矩阵的定义定义:设A=[
- 【数学建模】001
反方向的钟儿
数学建模数学建模算法笔记
数学建模方法论层次分析法:确定评级价指标形成评价体系1.评价的目标是什么2.评价标准是什么3.可选方案有哪些以此来选择最优方案“两两”比较发来确定指标重要性可以画图列表,产生几个比较变量:产生一系列正互反矩阵,进而产生判断矩阵,可以得出各个评判指标之间的权重向量一致矩阵和不一致矩阵
- 数学建模:评价性模型学习——层次分析法(AHP模型)
美肚鲨ccc
matlab矩阵数据分析算法
目录前言一、流程介绍二、模型实现1.构建层次结构2.构建判断矩阵1.对指标进行赋权2.建立判断矩阵3.层次单排序及一致性检验1、准则层2、方案层4、计算得分三、方法分析总结前言之前在课程作业上简单用过层次分析法,这次再系统性学习一遍,写一篇学习笔记!一、流程介绍构建层次结构构建判断矩阵计算权重、一致性检验计算得分得出结论二、模型实现1.构建层次结构探究以下五个城市的城市旅游竞争力排名:成都、杭州、
- 【数学模型】层次分析_数学建模层次分析法例题及答案(1)
2401_84181253
程序员数学建模
|校园景色|0.1|0.2|0.8|经计算:A=0.4*0.6+0.3*0.5+0.2*0.3+0.1*0.2=0.47B=0.53B>A因此最终小坤去了大学B。即打分法解决评价问题时,只需要我们补充完成下面这张表格即可:权重方案1方案2指标1指标2指标3指标4同颜色单元格之和为1。一、层次分析法的例题题目:选择好大学后,坤坤准备在开学前去旅游,他决定在城市A,城市B,城市C中选择一个作为目标地点
- 数学建模——层次分析法 AHP(Python代码)
奋斗小青年Lv1.0
数学建模python
层次分析法层次分析法是由美国运筹学家、匹兹堡大学教授T.L.Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解决了定性问题定量化的处理过程。AHP的主要特点是通过建立递阶层次结构,把人类的判断转化到若干因素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重要度的比较上面。步骤第一步构造系统的递阶层次结构构造目标
- 数学建模笔记——层次分析法(AHP)
less is more_0930
《数学》数学建模笔记算法
本文借鉴了数学建模清风老师的视频和课件,如有错误欢迎大家批评指正。原视频地址:清风数学建模:https://www.bilibili.com/video/BV1DW411s7wihttps://www.bilibili.com/video/BV1DW411s7wi1.预备知识层次分析法:层次分析法(TheAnalyticHierarchyProcess,AHP)是一种系统分析与决策的综合评价方法,
- 层次分析法(AHP, Analytic Hierarchy Process)
时代的狂
读书摘要笔记
层次分析法(AHP,AnalyticHierarchyProcess)是一种多层次、多因素的决策分析方法,用于解决复杂的决策问题。它通过将问题结构化,将决策目标分解为多个层次,并对不同的决策因素进行比较,进而得出各因素的相对重要性,并帮助决策者做出合理的决策。层次分析法的基本步骤建立层次结构模型首先将决策问题分解为多个层次,通常包括目标层、准则层(即影响决策的主要因素)、子准则层(即对准则进一步细
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 2024国赛数学建模评价类算法解析,2024国赛数学建模C题思路模型代码解析
灿灿数模
数学建模
2024国赛数学建模评价类算法解析,2024国赛数学建模C题思路模型代码解析:9.5开赛后第一时间更新,更新见文末名片1层次分析法基本思想是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成目标层、准则层和方案层,并通过人们的判断对决策方案的优劣进行排序,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,并用数学为分析、决策、评价、预报和控制提供定量的依据。基本步骤构建层次
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- 层次分析法(附实例)
陌雨’
数学建模
层次分析法-AHP问题:选择一部适合自己的手机一、确定评价对象与评价指标评价对象评价指标二、确定打分比较矩阵两两比较得到比较矩阵判断比较矩阵是否能通过一致性检验得分向量归一化处理求解得分向量打分矩阵模型评价优点系统性的分析方法简洁实用的决策方法所需定量数据信息较少缺点不能为决策提供新方案定量数据较少,定性成分多,不易令人信服指标过多时,数据统计量大,且权重难以确定特征值和特征向量的精确求法比较复杂
- 决策分析——层次分析法
王红臣同学
算法
工程测量与经济决策方案决策分析——层次分析法一、描述层次分析法的基本原理:根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最底层相对于最高层的相对重要权值的确定或相对优劣次序的排定。总的来说这是一种定性和定量相结合的、系统的、层次化的分析方法。这种方法的特点可以对复杂决策问
- 【数模百科】一文快速讲清楚层次分析法AHP(附python代码和参考美赛论文)
小树modelwiki
python开发语言数学建模算法
本文摘录自层次分析法原理-数模百科,如果你想了解更多关于层次分析法的知识,请移步数模百科。层次分析法(AnalyticHierarchyProcess,简称AHP)是一种解决复杂决策问题的方法。这个方法是由美国运筹学家托马斯·萨蒂(ThomasL.Saaty)在上世纪70年代发明的。那时候,萨蒂教授想要找到一个既科学又实用的方法,帮助人们在面对很多难以直接比较的选择项时,能够做出最合适的决策。比如
- AHP层次分析法基础内容及python代码实现
王一二_biu
概述层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元
- 层次分析法(数模)
Eeeeye_
数学建模
例题当遇到多个要素,很难一次性地客观地完成一整个权重表格,故使用两两对比来完成权重表格层次分析法的思想可能出现的问题标准的矩阵(一致矩阵)一致性检验步骤(重要)权重的计算一致矩阵计算方法:挑选一列(例如苏杭)(在一致矩阵中,每一列计算结果都一样),要素之间所成的真正比例就是列中的比例(1、1/2、1/4),所以权重如上计算。注意归一化判断矩阵方法1(算数平均法)文字描述:数学公式:几何平均法特征值
- 美赛注意事项
RunningBComeOn
美国大学生数学建模
2024年1月27日:赖维杰同学分享1、最后的展现必须要漂亮(绘图、呈现)李维情西北建模王论文位(核心)必须清楚建模位、编程位知道做了些什么常见模型:1、看真题,读往年论文,选定模型。2、看课程。火热关键词:人工智能、机器学习、深度学习、区块链、大数据技术、Chat-GPTEF题目:第一问:变量之间的关系(关系题:层次分析法、熵权法等)第二问:预测类问题(例如使用时间维度的马尔科夫、链等预测方法)
- 层次分析法
Sanchez·J
美赛算法python数学建模
引入生活中有很多决策问题,需要依据一定的标准选择某一种方案。比如,买衣服一般依据质量、颜色、价格、款式等因素选择。以一个例子引入:物品因素1因素2因素3因素4A6000w106.525B3400w68.146C5500w87.531如何综合这几个因素,以某种标准,选出A、B、C三者的最优?显然,直接相加不可取,因为这样因素1掩盖了另外三个,成为决定性因素。因此我们想到,要化为同一数量级,且保证在同
- AHP层次分析法
亦旧sea
人工智能算法机器学习
AHP层次分析法(AnalyticHierarchyProcess)是一种用于多准则决策的数学模型和过程。它被广泛应用于管理科学和运筹学领域,用于处理复杂的决策问题。AHP层次分析法通过将决策问题分解为多个层次结构,并对每个层次的准则和选择进行比较和评价。它基于人们在处理决策问题时的直觉和判断,通过对准则和选择进行定量和定性的比较,最终得出最优的决策。AHP层次分析法包括以下步骤:1.构建层次结构
- 层次分析法(AHP)和模糊层次分析法(FAHP)
酸酸甜甜我最爱
基础理论学习笔记学习
一、什么是层次分析法基本思想:根据多目标评价问题的性质和总目标,把问题本身按照层次进行分解,构成一个由下而上的阶梯层次结构。基本步骤:分析问题,确定系统中各因素之间的因果关系,对决策问题的各种要素建立多级(多层次)递阶结构模型。对同一层次(等级)的要素以上一级的要素为准则进行两两比较,并根据评定尺度确定其相对重要程度,最后据此建立判断矩阵。通过一定计算,确定各要素的相对重要度。通过综合重要度的计算
- TOPSIS(内含python完整代码)
者半
算法
背景:依然是评价决策类问题层次分析法的弊端:层次分析法决策层不能太多,而且构造判断矩阵相对了主观。那有没有别的方法呢?那怎么衡量A、B、C和最好、最差的距离呢?把(9,3),(6,10)作为二维平面的一个点距离最好点最近或者距离最差点最远的的就是综合条件最好的也就是点越靠近左上角越差,越靠近矩阵右下角越好这里(6,10)也就是反理想解,也就是最差的对象,(9,3)是理想解,也就是综合条件最好的对象
- 熵权法(内含python完整代码)
者半
算法
背景:依然是熟悉的评价决策类模型评价类模型最后根据各指标进行打分时因各指标的重要性不同往往需要权重,但是在层次分析法和TOPSIS法里权重都是主观得到的(主观评价、查文献等),那有没有更为客观的方法得到权重呢?那就是我们今天的主角啦---熵权法观察候选人的数据我们可以发现,A、B、C三人的身高是极为接近的,那么对于找对象来说这个指标是不是就不重要了呢?而对于体重这个指标来说,三人相差较大,那么找对
- 层次分析法(内含python完整代码)
者半
算法
背景:(评价决策类)日常生活中有很多的决策问题。决策是指在面临多种方案时需要依据一定的标准选择某一种方案买衣服,一般要依据质量、颜色、价格、款式等方面的因素选择概念:层次分析法(AnalyticHierarchyProcess,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T.L.Saaty教授于上世纪70年代初期提出的一种
- 智能风控体系之层次分析法专家评分卡
风控小兵突击
智能风控机器学习数据分析金融python自动化
层次分析法(AnalyticHierarchyProcess,简称AHP)由美国运筹学家托马斯·塞蒂(T.L.Saaty)于上世纪70年代中期提出,是通过定量与定性分析相结合的方法来进行多方案或多目标决策分析的一种方法。该方法的主要思想是通过将一个复杂的问题分解为若干层并考虑不同因素,对两两指标进行成对比较判断其重要程度,并建立判断矩阵进行重要性程度的权重确定,最终找到最佳方案来辅助决策。专家经验
- 数学建模---评价类模型总结
Faelan.
数学建模
目录一、层次分析法(AHP)二、topsis三、熵值法四、模糊综合评价法一、层次分析法(AHP)优点:结构清晰:通过建立层次结构,能清楚地展示决策要素之间的关系。易于理解和应用:操作直观,易于收集和处理数据。缺点:主观性较强:决策者的主观判断对结果影响较大。一致性检验可能复杂:需要进行一致性检验,处理起来可能比较复杂。适用场景:适用于需要进行多标准决策的场合,如方案选择、风险评估等。步骤:建立层次
- 数模算法--优劣解距离法--tosis法
Faelan.
算法
topsis法一、引入二、建模过程三、模型拓展与总结四、代码实现一、引入由于层次分析法自身的局限性,在决策因素过多,数据已知情况下不易准确说明。特此引入优劣解距离法(TechniqueforOrderPreferencebySimilaritytoIdealSolution)。TOPSIS法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。-------
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那