随机森林(random forest)

随机森林(random forest)

随机森林的构造过程

  1. 假如有N个样本,则有放回的随机选择N个样本(每次随机选择一个样本,然后返回继续选择)。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。

  2. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。

  3. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。

  4. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。”   从上面的步骤可以看出,随机森林的随机性体现在每颗数的训练样本是随机的,树中每个节点的分类属性也是随机选择的。有了这2个随机的保证,随机森林就不会产生过拟合的现象了。

  随机森林有2个参数需要人为控制,一个是森林中树的数量,一般建议取很大。另一个是m的大小,推荐m的值为M的均方根。

随机森林的优点

  比较适合做多分类问题;训练和预测速度快;对训练数据的容错能力,是一种有效地估计缺失数据的一种方法,当数据集中有大比例的数据缺失时仍然可以保持精度不变;能够有效地处理大的数据集;可以处理没有删减的成千上万的变量;能够在分类的过程中可以生成一个泛化误差的内部无偏估计;能够检测到特征之间的相互影响以及重要性程度;不过出现过度拟合;实现简单容易并行化。

你可能感兴趣的:(机器学习具体算法,经典机器学习算法)