传送门
网上很多题解都是错的(单纯求 b ≥ φ ( p ) b\geq \varphi(p) b≥φ(p)是不对的),可以去洛谷做一下扩展欧拉定理的模板,题解区的OI爷说的才是对的
当 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1时,有 a φ ( x ) ≡ 1 ( m o d p ) a^{\varphi(x)} \equiv 1~~(mod~~p) aφ(x)≡1 (mod p)
推论:当 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1时,有 a b = a b % φ ( p ) ( m o d p ) a^b=a^{b\%\varphi(p)}~~(mod~~p) ab=ab%φ(p) (mod p)
当 a , p a,p a,p均为正整数时(无需互质):
a b ≡ { a b , b < φ ( p ) a b % φ ( p ) + φ ( p ) , b ≥ φ ( p ) ( m o d p ) a^b \equiv \left\{\begin{array}{rcl} a^b~~,b< \varphi(p) \\ a^{b\% \varphi(p)+\varphi(p)}~~, b\geq \varphi(p)\end{array}\right.~~(mod~~p) ab≡{ ab ,b<φ(p)ab%φ(p)+φ(p) ,b≥φ(p) (mod p)
那么本题就迎刃而解了:
//
// Created by Happig on 2020/8/26
//
#include <iostream>
#include <math.h>
#include <string>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 2e5 + 10;
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
inline ll mul(ll a, ll b, ll p) {
if (p <= 1000000000) return a * b % p;
else if (p <= 1000000000000LL) return (((a * (b >> 20) % p) << 20) + (a * (b & ((1 << 20) - 1)))) % p;
else {
ll d = (ll) floor(a * (long double) b / p + 0.5);
ll ret = (a * b - d * p) % p;
if (ret < 0) ret += p;
return ret;
}
}
inline ll slow_mul(ll a, ll b, ll Mod) {
ll ans = 0;
while (b) {
if (b & 1) ans = (ans + a) % Mod;
a = (a + a) % Mod;
b >>= 1;
}
return ans;
}
ll euler_phi(ll n) {
int m = sqrt(n + 0.5);
ll ans = n;
for (int i = 2; i <= m; i++) {
if (n % i == 0) {
ans = ans / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n > 1) ans = ans / n * (n - 1);
return ans;
}
ll qkp(ll x, ll n, ll p) {
ll ans = 1;
x %= p;
while (n) {
if (n & 1) ans = mul(ans, x, p);
x = mul(x, x, p);
n >>= 1;
}
return ans;
}
string s;
int main() {
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
ll a, b, c;
while (cin >> a >> c >> s) {
ll phi = euler_phi(c);
ll ans = 0;
for (int i = 0; i < s.size(); i++){
ans = ans * 10 + s[i] - '0';
if(ans>=phi) break;
}
if(ans<phi) cout<<qkp(a,ans,c)<<endl;
else{
ans = 0;
for (int i = 0; i < s.size(); i++)
ans = (ans * 10 + s[i] - '0')%phi;
ans+=phi;
cout << qkp(a, ans, c) << endl;
}
}
return 0;
}