现在我直接给出实验结果和代码,公式推导在前面几节已经给出,现在给出分析。
收敛性排名
1-14分别是a=1,BB(1),BB(2),a=0.3,a=0.1,a=1.3,a=0.03,CG,DFP,BFGS,0.01,steepset Descent,Turst Region with DogLeg,Newton(NT).
其中两种拟牛顿法重合,收敛性一样。SD(Steepest Descent)与a=0.03重合。收敛性最好是a=1,最差的是牛顿法。DFP,BFGS,CG下降比较缓慢。
读者可根据收敛性快慢来选取所需要的方法。
后面还会介绍有限内存的BFGS
main.m
x = load('ex3x.dat');
y = load('ex3y.dat');
trustRegionBound = 1000;
x = [ones(size(x,1),1) x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3);
itera_num = 1000; %尝试的迭代次数
sample_num = size(x,1); %训练样本的次数
jj=0.00001;
figure
alpha = [0.01, 0.03, 0.1, 0.3, 1, 1.3];%因为差不多是选取每个3倍的学习率来测试,所以直接枚举出来
plotstyle = {'b', 'r', 'g', 'k', 'b--', 'r--'};
theta_grad_descent = zeros(size(x(1,:)));
%% CG方法
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
Jtheta(1) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);
grad1=(1/sample_num).*x'*(x*theta-y);
Q=x'*x;
d1=-grad1;
a1=-(grad1'*d1)/(d1'*Q*d1);
theta=theta+a1*d1;
d_old=d1;
for i = 2:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
g=(1/sample_num).*x'*(x*theta-y);
d=-g;
beta=(g'*Q*d_old)/(d_old'*Q*d_old);
d_new=-g+beta*d_old;
a=-(g'*d)/(d'*Q*d);
theta=theta+a*d;
d_old=d_new;
end
plot(0:99, Jtheta(1:100),'b-o','LineWidth', 2);%此处一定要通过char函数来转换
hold on
%% BB(1)+(2)法
% BB(1)
theta_old = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
%求解a1,d1
Jtheta(1) = (1/(2*sample_num)).*(x*theta_old-y)'*(x*theta_old-y);
grad1=(1/sample_num).*x'*(x*theta_old-y);
Q=x'*x;
d1=-grad1;
a1=(grad1'*grad1)/(grad1'*Q*grad1);
theta_new=theta_old+a1*d1;
for i = 2:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta_new-y)'*(x*theta_new-y);%Jtheta是个行向量
grad_old=(1/sample_num).*x'*(x*theta_old-y);
grad_new = (1/sample_num).*x'*(x*theta_new-y);
if abs(grad_new) trustRegionBound*trustRegionBound;
a = trustRegionBound / sqrt((du'*du));
else if dB'*dB > trustRegionBound*trustRegionBound
a = sqrt((trustRegionBound*trustRegionBound - du'*du) / ((dB-du)'*(dB-du))) + 1;
end
end
if a < 1
d = a * du;
else
d = du + (a - 1) * (dB - du);
end
Jtheta1(i)=(1/(2*sample_num)).*(x*(theta+d)-y)'*(x*(theta+d)-y);
p = (Jtheta(i)-Jtheta1(i))/(-grad'*d-1/2*d'*B*d);
if p > 0.75 && sqrt(abs(d'*d) - trustRegionBound) < 0.001
trustRegionBound = min(2 * trustRegionBound, 10000);
else if p < 0.25
trustRegionBound = sqrt(abs(d'*d)) * 0.25;
end
end
if p > 0%q(zeros(2,1),x) > q(d, x)
theta = theta + d;
end
end
K(1)=Jtheta(500);
plot(0:99, Jtheta(1:100),'k-.','LineWidth', 3)%此处一定要通过char函数来转换
hold on
%% 固定学习率法
theta_grad_descent = zeros(size(x(1,:)));
for alpha_i = 1:length(alpha) %尝试看哪个学习速率最好
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
theta = theta - alpha(alpha_i).*grad;
end
K(alpha_i+1)=Jtheta(500);
plot(0:99, Jtheta(1:100),char(plotstyle(alpha_i)),'LineWidth', 3)%此处一定要通过char函数来转换
hold on
end
%% SD算法
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
Q=x'*x;
d=-grad;
a=(grad'*grad)/(grad'*Q*grad);
theta = theta + a*d;
end
K(1)=Jtheta(500)
plot(0:99,Jtheta(1:100),'b--','LineWidth', 2);
hold on
%% 牛顿法
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
Q=x'*x;
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
d=-(inv(Q)*grad);
a=(grad'*grad)/(grad'*Q*grad);
theta = theta + a*d;
end
K(1)=Jtheta(500)
plot(0:99, Jtheta(1:100),'b->','LineWidth', 2);
hold on
theta_old = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
Jtheta(1) = (1/(2*sample_num)).*(x*theta_old-y)'*(x*theta_old-y);
grad1 = (1/sample_num).*x'*(x*theta_old-y);
Q=x'*x;
a=(grad1'*grad1)/(grad1'*Q*grad1);
H=inv(Q);
d1=-(H*grad1);
theta_new=theta_old+a*d1;
for i = 2:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta_new-y)'*(x*theta_new-y);%Jtheta是个行向量
grad_old=(1/sample_num).*x'*(x*theta_old-y);
grad_new = (1/sample_num).*x'*(x*theta_new-y);
L=grad_new-grad_old;
s=theta_new-theta_old;
H=H-(H'*L*L'*H)/(L'*H*L)+(s*s')/(s'*L);
d=-H*grad_new;
a=(grad_new'*grad_new)/(grad_new'*Q*grad_new);
theta_old=theta_new;
theta_new = theta_new + a*d;
end
K(1)=Jtheta(500) ;
plot(0:99, Jtheta(1:100),'k-o','LineWidth', 4);
hold on
theta_old = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
Jtheta(1) = (1/(2*sample_num)).*(x*theta_old-y)'*(x*theta_old-y);
grad1 = (1/sample_num).*x'*(x*theta_old-y);
Q=x'*x;
a=(grad1'*grad1)/(grad1'*Q*grad1);
H=inv(Q);
d1=-(H*grad1);
theta_new=theta_old+a*d1;
for i = 2:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta_new-y)'*(x*theta_new-y);%Jtheta是个行向量
grad_old=(1/sample_num).*x'*(x*theta_old-y);
grad_new = (1/sample_num).*x'*(x*theta_new-y);
L=grad_new-grad_old;
s=theta_new-theta_old;
H=H-(H*L*s'+s*L'*H)/(L'*s)+(1+(L'*H*L)/(s'*L))*(s*s')/(s'*L);
d=-H*grad_new;
a=(grad_new'*grad_new)/(grad_new'*Q*grad_new);
theta_old=theta_new;
theta_new = theta_new + a*d;
end
K(1)=Jtheta(500) ;
plot(0:99, Jtheta(1:100),'r-o','LineWidth', 2);
hold on
%%
legend('CG','BB(1)','BB(2)','Trust Region with DogLeg','0.01','0.03','0.1','0.3','1','1.3','Steepest Descent','NT','DFP','BFGS');
xlabel('Number of iterations')
ylabel('Cost function')