威尔逊定理与逆定理及证明

威尔逊定理:( p -1 )! ≡ p -1  ≡ -1 ( mod p ) 时,p为素数。

(即:p是质数,则(p-1)! ≡ p-1 ≡ -1(mod p))

综合来说,就是:( p -1 )! ≡ p -1  ≡ -1 ( mod p )  当且仅当  p为素数。

证明如下

充分性:

当p不是素数,那么令p=a*b ,其中1 < a < p-1 ,1 < b < p-1.

    (1)若a≠b,

        因为(p-1)!=1*2*...*a*...*b*...*p-1,

        所以(p-1)!≡ 0 (mod a)        

               (p-1)!≡ 0 (mod b)

        可得(p-1)!≡ 0 (mod a*b) ,

              即 (p-1)!≡ 0 (mod p)

        与( p -1 )! ≡ -1 ( mod p )  矛盾

    (2)若a=b

        因为(p-1)!=1*2*...*a*...*2a*...*p-1.

        所以(p-1)!≡ 0 (mod a)          

               (p-1)!≡ 0 (mod 2a)

        可得(p-1)!≡ 0 (mod a*2a) => (p-1)!≡ 0 (mod a*a) ,

          即 (p-1)!≡ 0 (mod p)

        与( p -1 )! ≡ -1 ( mod p )  矛盾

因此p只能是素数。

必要性:

当p为2,( p -1 )! ≡ -1 ( mod p ) 显然成立

当p为3,( p -1 )! ≡ -1 ( mod p ) 显然成立

对于p>=5,令M={2,3,4,...,p-2}.

        对于a∈M,令N={a,2*a,3*a,4*a,....(p-2)*a,(p-1)*a}

        令1 <= t1 <= p-1 ,1 <= t2 <= p-1,t1 ≠ t2

        那么t1*a∈N,t2*a∈N。

        若t1*a≡t2*a (mod p) ,那么|t1-t2|*a ≡ 0 (mod p)。

        因为|t1-t2|*a∈N,与N中元素不能被p除尽矛盾。

        所以t1*a≡t2*a不成立。

        那么N中元素对p取模后形成的集合为{1,2,3,4,...,p-1}.

        设x*a ≡ 1 (mod p)。

                当x=1时, x*a=a, 对p取模不为1,所以不成立。

                当x=p-1时,(p-1)*a=p*a-a, 对p取模不为1,所以不成立。

                当x=a时,a*a≡1 (mod p),可得(a+1)*(a-1)≡ 0 (mod p),a=1或a=p-1 ,所以不成立。

        综上所述,x,a∈M,并且当a不同时,x也随之不同。

        所以,M集合中每一个元素a都能够找到一个与之配对的x,使得x*a ≡ 1 (mod p).

        (p-1)!=1*2*3*...p-1

                  =1*(2*x1)*(3*x3)*...*(p-1)

        所以, (p-1)!1*(p-1)    (mod p)

        即,(p-1)!-1     (mod p) 

       证明完毕

你可能感兴趣的:(acm,数学,知识点)