- 生成式人工智能实战 | 像素卷积神经网络(PixelCNN)
盼小辉丶
生成式人工智能实战150讲深度学习生成模型aigc
生成式人工智能实战|像素卷积神经网络0.前言1.PixelCNN工作原理1.1掩码卷积层1.2残差块2.PixelCNN分析3.使用混合分布改进PixelCNN3.1模型构建3.2模型训练0.前言像素卷积神经网络(PixelConvolutionalNeuralNetwork,PixelCNN)是于2016年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通
- 基于cnn和resnet和mobilenet对比实现驾驶员分心检测
深度学习乐园
cnn人工智能神经网络
演示效果及获取项目源码点击文末名片本项目旨在通过深度学习技术,结合卷积神经网络(CNN)模型、ResNet模型和MobileNet模型,实现对驾驶员分心行为的自动检测。我们通过训练这些模型来识别不同的驾驶员分心行为,包括如发短信、通话、喝水等行为。使用的数据集包含驾驶员行为的图片,并且针对每个行为标注了相应的标签(例如"正常驾驶"、"右手发短信"等)。MobileNetV2是Google于2018
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- 渣土车识别漏检率高?陌讯算法实测降 90%
2501_92487936
目标跟踪人工智能计算机视觉目标检测算法智慧城市
在城市建筑垃圾运输管理中,渣土车的合规性监测一直是行业痛点。传统视觉算法在复杂工况下常常出现误判——阴雨天车牌识别模糊、夜间车灯眩光导致车型误分类、不同品牌渣土车混检时准确率骤降。某市政管理局的统计显示,采用传统方案时,日均漏检率高达23%,由此引发的违规倾倒投诉占比超60%。技术解析:从单模态到多特征融合的突破传统渣土车识别多依赖单一目标检测模型(如FasterR-CNN),其核心缺陷在于:特征
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- 深度学习——CNN(3)
飘涯
前言:前面介绍了最基本的Lenet,下面介绍几种其他的网络结构CNN-AlexNet网络结构如下图:从图中可以看出,采用双gpu训练增加LRN归一化层:本质上,这个层也是为了防止激活函数的饱和的。采用dropout防止过拟合基于AlexNet进行微调,诞生了ZF-netCNN-GoogleNetGoogLeNet借鉴了NIN的特性,在原先的卷积过程中附加了11的卷积核加上ReLU激活。这不仅仅提升
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- 目标检测中的NMS算法详解
好的,我们来详细解释一下目标检测中非极大值抑制(Non-MaximumSuppression,NMS)的相关概念和计算过程。1.为什么需要NMS?问题:目标检测模型(如FasterR-CNN,YOLO,SSD等)在推理时,对于同一个目标物体,通常会预测出多个重叠的、不同置信度(confidencescore)的候选边界框(BoundingBoxes)。直接输出所有这些框会导致:结果冗余:同一个物体
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- python——struct模块
稚与
Pythonpython数据分析
文章目录structmodule简介常用函数常见format解析MINSTstructmodule最近在学CNN,想找一个合适的数据集,就想到了MINST。但是官网中挂出的文件是train-images-idx3-ubyte.gz等解压后为idx3-ubyte后缀文件。后缀名中idx3表示3维的数据。简介struct模块用于二进制和常用数据类型之间的互相转化,此模块中大部分函数接受一个实现了Buf
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- FasterRCNN源码解析(一)-——跑通代码_霹雳巴拉wz的代码看不懂
2401_84140023
2024年程序员学习运维linux面试
为了做好运维面试路上的助攻手,特整理了上百道【运维技术栈面试题集锦】,让你面试不慌心不跳,高薪offer怀里抱!这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。本份面试集锦涵盖了174道运维工程师面试题128道k8s面试题108道shell脚本面试题200道Linux面试题51道docker面试题35道Je
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 中药细粒度图像分类
小lo想吃棒棒糖
分类数据挖掘人工智能
在细粒度图像分类(FGVC)领域,BilinearCNN(BCNN)模型因其能够捕捉图像中的局部特征交互而受到广泛关注。该模型通过双线性池化操作将两个不同CNN提取的特征进行外积运算,从而获得更加丰富的特征表示,这对于区分外观相似但属于不同子类别的物体尤其有效。然而,BCNN通常计算成本较高,限制了其在移动设备或资源受限环境下的应用。为了实现轻量化并保持高精度的细粒度分类,可以考虑将MobileN
- 【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(4)Pytorch实战
IT古董
人工智能课程深度学习神经网络pytorch
第三章:神经网络原理详解与Pytorch入门第二部分:深度学习框架PyTorch入门第四节:Pytorch模型构建内容:如何搭建复杂网络以及如何修改模型与保存一、构建复杂神经网络结构在PyTorch中,构建复杂模型通常通过继承nn.Module类,分模块组织层与前向传播逻辑。示例:自定义一个卷积神经网络(CNN)importtorch.nnasnnimporttorch.nn.functional
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- 大模型卷积神经网络(CNN)的架构原理
hao_wujing
cnn架构人工智能
大家读完觉得有帮助记得关注和点赞!!!一、卷积神经网络(CNN)的核心原理与架构CNN是一种专为结构化数据(如图像、文本)设计的深度学习模型,其核心在于层次化特征提取与参数高效共享,使其成为大模型中视觉和多模态任务的基础组件。1.核心结构分层解析输入层接收预处理后的数据(如图像去均值、归一化),为后续卷积操作提供标准化输入39。卷积层(核心)局部感知:每个卷积核(如3×3)仅处理输入数据的局部区域
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型人工智能自然语言处理算法均值算法prompt
LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其在于跨模态对齐技术——通过训练将图像和文本映射到同一语义空间,使语言模型能够理解视觉信息。一、为什么LLM能识别图像?核心技术原理1.跨模态对齐:让图像与文本说同一种语言向量空间统一:图像通过CNN或ViT编码为特征向量(如512维),文本通过Transformer编码为语义向量(如768维)。CLIP等模型通过对比学习优化编码
- PyTorch+CNN进行猫狗识别项目
任务介绍数据结构为:big_data├──train│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog│└──XXX.jpg(每个文件夹含若干张图像)├──val│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog└─────└──XXX.jpg(每个文件夹含若干张图像)需要对train数据集进行训练,达到给定val数据集中的一张猫/狗的图片,识别
- MATLAB 实现 SRCNN 图像超分辨率重建
leo__520
matlab超分辨率重建开发语言
SRCNN代码实现。该代码使用三层卷积神经网络,进行图像的超分辨率重建,效果比双三次插值好很多SRCNN/Readme.txt,1494SRCNN/SRCNN.m,1267SRCNN/Set14/baboon.bmp,720054SRCNN/Set14/barbara.bmp,1244214SRCNN/Set14/bridge.bmp,263222SRCNN/Set14/coastguard.bm
- 视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用
原文链接:https://tecdat.cn/?p=42891原文出处:拓端数据部落公众号分析师:ZiqiYe视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用作为数据科学领域的从业者,我们常面临这样的挑战:如何让机器真正“看懂”图像中的信息?在为客户完成服装零售行业的图像识别时,这一问题尤为突出。追溯图像识别技术的发展,早期依赖人工设计特征,如边缘检测、纹理分析等,效率低下且适
- Python实现基于POA-CNN-LSTM-Attention鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行多变量回归预测的详细项目实例
nantangyuxi
Python算法神经网络python人工智能深度学习目标检测机器学习
目录Python实她基她POA-CNN-LSTM-Attentikon鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行她变量回归预测她详细项目实例...1项目背景介绍...1项目目标她意义...1提升她变量回归预测精度...2优化模型训练效率...2python复制ikmpoxtos#操作系统接口,用她环境管理和文件操作ikmpoxtqaxnikngs#警告管理模块,控制运行时警
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include