flink + kafka + es 流式计算

首先讲一下背景,公司现在要做流式,最后敲定用flink来做(考虑flink在阿里的巨大成功)。我们的数据读取Kafka ,经过处理之后会存储到ES中。现在还处在研究阶段,把一些基本的东西跑通,写这篇博客希望做一个记录 也希望能给刚开始搞flinkd 朋友们一点帮助。

用到的技术:flink on yarn (1.7.0)    kafka(1.1.1)  es(1.7) maven(3.04)  我用idea编辑器  scala(2.11)语言写的   flink 本地也是可以跑的   没有hadoop集群的小伙伴可以在本地测试

package info

import java.util.Properties

import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.api.common.restartstrategy.RestartStrategies
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.api.common.state.StateTtlConfig.TimeCharacteristic
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSink, ElasticsearchSinkFunction}
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
import org.elasticsearch.common.transport.{InetSocketTransportAddress, TransportAddress}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer010}

object Test03 {

  def main(args: Array[String]) {

    //获取flink执行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
//    env.enableCheckpointing(5000)
    val config = new java.util.HashMap[String, String]
    config.put("cluster.name", "elasticsearch1")
    // 加上这个条件 按每个事件处理  不加会走buff
    config.put("bulk.flush.max.actions", "1")

    env.enableCheckpointing(1000)


    val transportAddresses = new   java.util.ArrayList[TransportAddress]
    transportAddresses.add(new InetSocketTransportAddress("ESIp", 9300))
    val properties: Properties = new Properties();


    properties.setProperty("bootstrap.servers","kafkaIp:9092")
    properties.setProperty("zookeeper.connect","zookeeperIp:2181")
    properties.put("auto.offset.reset", "earliest")
    properties.put("enable.auto.commit", "true")
    properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("group.id","testgroup12")

    val kafkaConsumer = new FlinkKafkaConsumer010(
      "test2",//topic
      new SimpleStringSchema,
      properties)

    val messageStream = env
      .addSource(kafkaConsumer)

    messageStream.print()

    messageStream.addSink(new ElasticsearchSink(config,transportAddresses,new ElasticsearchSinkFunction[String](){
      def createIndexRequest(element: String): IndexRequest = {
        val json = new java.util.HashMap[String, String]
        json.put("data", element)

        Requests.indexRequest()
          .index("fktest")
          .`type`("streaming")
          .source(json)
      }
      import org.apache.flink.api.common.functions.RuntimeContext
      import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer
      def process(element:String,ctx: RuntimeContext,indexer: RequestIndexer):Unit= {
        indexer.add(createIndexRequest(element))
      }
    }))
   
    env.execute("StreamESTest")
  }

}

在idea 中启动代码   然后再kafka的机器上  起一个生产者    输入一些数据  看能否出结果

起生产者命令:  %KAFKA_HOME%/bin/kafka-console-producer.sh --broker-list 1  kafkaIp:9092  --topic test2

ES中查询出的数据

flink + kafka + es 流式计算_第1张图片

 

看到这个结果出来  基本上kafka-flink-es 就通了   

你可能感兴趣的:(flink)