数据结构与算法之美笔记 : 回溯算法

 

概念

回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。

为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。

每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

 

 

我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。

你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。

八皇后问题就是期望找到所有满足这种要求的放棋子方式。

 

数据结构与算法之美笔记 : 回溯算法_第1张图片

 

我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。

回溯算法非常适合用递归代码实现,所以,我把八皇后的算法翻译成代码。我在代码里添加了详细的注释,你可以对比着看下。如果你之前没有接触过八皇后问题,建议你自己用熟悉的编程语言实现一遍,这对你理解回溯思想非常有帮助。

int[] result = new int[8];// 全局或成员变量, 下标表示行, 值表示 queen 存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
  if (row == 8) { // 8 个棋子都放置好了,打印结果
    printQueens(result);
    return; // 8 行棋子都放好了,已经没法再往下递归了,所以就 return
  }
  for (int column = 0; column < 8; ++column) { // 每一行都有 8 中放法
    if (isOk(row, column)) { // 有些放法不满足要求
      result[row] = column; // 第 row 行的棋子放到了 column 列
      cal8queens(row+1); // 考察下一行
    }
  }
}

private boolean isOk(int row, int column) {// 判断 row 行 column 列放置是否合适
  int leftup = column - 1, rightup = column + 1;
  for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
    if (result[i] == column) return false; // 第 i 行的 column 列有棋子吗?
    if (leftup >= 0) { // 考察左上对角线:第 i 行 leftup 列有棋子吗?
      if (result[i] == leftup) return false;
    }
    if (rightup < 8) { // 考察右上对角线:第 i 行 rightup 列有棋子吗?
      if (result[i] == rightup) return false;
    }
    --leftup; ++rightup;
  }
  return true;
}

private void printQueens(int[] result) { // 打印出一个二维矩阵
  for (int row = 0; row < 8; ++row) {
    for (int column = 0; column < 8; ++column) {
      if (result[row] == column) System.out.print("Q ");
      else System.out.print("* ");
    }
    System.out.println();
  }
  System.out.println();
}

两个回溯算法的经典应用

回溯算法的理论知识很容易弄懂。不过,对于新手来说,比较难的是用递归来实现。所以,我们再通过两个例子,来练习一下回溯算法的应用和实现。

 

1.0-1 背包

我们有一个背包,背包总的承载重量是 Wkg。

现在我们有 n 个物品,每个物品的重量不等,并且不可分割。

我们现在期望选择几件物品,装载到背包中。

在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

 

 

这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。

先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

描述起来很费劲,我们直接看代码,反而会更加清晰一些。

 

 

public int maxW = Integer.MIN_VALUE; // 存储背包中物品总重量的最大值
// cw 表示当前已经装进去的物品的重量和;i 表示考察到哪个物品了;
// w 背包重量;items 表示每个物品的重量;n 表示物品个数
// 假设背包可承受重量 100,物品个数 10,物品重量存储在数组 a 中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
  if (cw == w || i == n) { // cw==w 表示装满了 ;i==n 表示已经考察完所有的物品
    if (cw > maxW) maxW = cw;
    return;
  }
  f(i+1, cw, items, n, w);
  if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
    f(i+1,cw + items[i], items, n, w);
  }
}

 

2. 正则表达式

 

正则表达式里最重要的一种算法思想就是回溯。

 

正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正表达式中只包含“*”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“*”匹配任意多个(大于等于 0 个)任意字符,“?”匹配零个或者一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?

 

 

我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。

如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。

 

public class Pattern {
  private boolean matched = false;
  private char[] pattern; // 正则表达式
  private int plen; // 正则表达式长度

  public Pattern(char[] pattern, int plen) {
    this.pattern = pattern;
    this.plen = plen;
  }

  public boolean match(char[] text, int tlen) { // 文本串及长度
    matched = false;
    rmatch(0, 0, text, tlen);
    return matched;
  }

  private void rmatch(int ti, int pj, char[] text, int tlen) {
    if (matched) return; // 如果已经匹配了,就不要继续递归了
    if (pj == plen) { // 正则表达式到结尾了
      if (ti == tlen) matched = true; // 文本串也到结尾了
      return;
    }
    if (pattern[pj] == '*') { // * 匹配任意个字符
      for (int k = 0; k <= tlen-ti; ++k) {
        rmatch(ti+k, pj+1, text, tlen);
      }
    } else if (pattern[pj] == '?') { // ? 匹配 0 个或者 1 个字符
      rmatch(ti, pj+1, text, tlen);
      rmatch(ti+1, pj+1, text, tlen);
    } else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
      rmatch(ti+1, pj+1, text, tlen);
    }
  }
}

 

 

内容小结

回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。

回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。

利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。


尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1 背包问题、图的着色、旅行商问题、数独、全排列、正则表达式匹配等等。
 

 

 

来源: 数据结构与算法之美    王争

 

 

你可能感兴趣的:(数据结构与算法之美)