- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- AUTOSAR汽车电子嵌入式编程精讲300篇-CAN总线协议在车载模块中的应用与实现
格图素书
汽车
目录知识储备面向车载开发的CAN通信协议1基本概念2优势3概念和特征4技术介绍5应用举例6测试工具编辑7错误处理编辑前言国内外研究现状总线与CAN总线技术CAN总线技术在电子汽车领域的研究现状OBD系统的发展和研究现状OBD车载模块的研究现状2OBD数据获取原理分析2.1车载CAN网络与OBD系统的连接和诊断2.1.1OBD接口2.1.2车载CAN总线网络与CAN报文2.1.3SAEJ1979协议
- AI工具使用手册:笑着学会让DeepSeek叫你主人
skyksksksksks
AI个人杂记人工智能深度学习神经网络自然语言处理机器学习
【别慌!你的智商还没欠费】各位父老乡亲兄弟姐妹们,今天我们要研究的是这个号称"赛博菩萨"的DeepSeek。先说好了啊,这玩意儿绝对比你家二哈听话,比前男友靠谱,关键还不用买狗粮!下面这张表请含泪收藏:功能对比DeepSeek你家二哈前男友响应速度0.5秒拆家2小时起已读不回3天+知识储备全网数据只会要饭王者荣耀段位售后服务24小时在线随地大小便人间蒸发术使用成本网费电费狗粮+沙发钱青春损失费—我
- 在本地部署DeepSeek等大模型时,需警惕的潜在安全风险
安 当 加 密
安全模型多因素认证访问控制加密技术数据安全
在本地部署DeepSeek等大模型时,尽管数据存储在本地环境(而非云端),但仍需警惕以下潜在安全风险:1.模型与数据存储风险未加密的存储介质:若训练数据、模型权重或日志以明文形式存储,可能被物理窃取(如硬盘丢失)或恶意软件扫描泄露。残留数据泄露:训练后的临时文件、缓存或内存未及时清理,可能被恢复并提取敏感信息。2.模型逆向工程风险模型反演攻击(ModelInversion):攻击者通过反复查询模型
- DeepSeek该选蒸馏版还是满血版
飞翔的FOX
人工智能
针对不同版本的DeepSeek,需要从多个维度综合分析:1.模型规模与基础能力671B模型在理论上具备更强的底层推理能力:更大参数量意味着更强的模式识别、逻辑推理和知识储备能力,尤其在跨领域、开放域任务中优势显著。70B模型若未经过充分行业适配,其原始能力上限低于671B。但在特定场景下,通过优化可能突破这一限制。2.行业数据适配的关键作用长期迭代的70B模型可通过以下方式缩小差距:领域微调:持续
- 【GPT入门】第10课 FunctionCalling介绍
*星星之火*
大模型gpt
【GPT入门】第10课FunctionCalling介绍1.大模型的两大缺陷导致需要连接外部世界2.FunctionCalling介绍3.functionCalling的感性认识1.大模型的两大缺陷导致需要连接外部世界大模型存在两大显著缺陷:一、知识储备存在局限性一方面,大模型并非全知全能。其训练数据无法涵盖世间所有信息,尤其是在垂直领域以及非公开数据方面,必然存在缺失。另一方面,大模型难以掌握最
- c语言笔记 数组进阶题目的理解
我是大咖
c语言笔记算法数据结构leetcode
题目:声明一个二维int型数组a,再声明另一个一维数组指针数组b,使该数组b的每一个指针分别指向二维数组a中的每一个元素(即每一个一维数组),然后利用数组b计算数组a的和。图解:画图帮助理解我们要清楚什么是指针数组和数组指针,我们先要有知识储备才能完美的做好这道题目.//定义一个指针数组int*p[3];指针数组:数组的元素是一个个指针,[]的元素优先级高于*;指针数组跟其他的普通数组的区别在于数
- 目标检测YOLO实战应用案例100讲-TDI线阵相机
林聪木
数码相机计算机视觉人工智能
目录知识储备图像基础知识分辨率单位及换算算法原理一、TDI基本原理二、信噪比提升机制三、时间同步机制四、TDIvs传统线扫描技术五、TDI的技术挑战六、最新的TDI技术发展知识储备图像基础知识首先什么是机器视觉?计算机视觉就是让计算机去理解获取数字图像与视频中的信息。最终实现一个与人类视觉系统实现相同功能的自动化系统。什么是机器视觉中的图像的前置知识——颜色模型?最为常用的颜色模型,分别是RGB颜
- AI学习预备知识-数据操作(5)内存节省
羞涩的小吉他
AI开发学习之路人工智能学习
AI学习预备知识-数据操作(5)内存节省提示:本系列持续更新中文章目录AI学习预备知识-数据操作(5)内存节省前言内存节省总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,本文主要讲解AI学习储备知识–在数据操作过程中所需考虑到的内存节省。内存节省提示:默认使用python,数据操作使用mxnet在数据操作过程中运行一些操作可能会导致
- 如何高效准备PostgreSQL认证考试?
leegong23111
postgresql数据库
高效准备PostgreSQL中级认证考试,可从知识储备、技能提升、模拟考试等方面入手,以下是具体建议:深入学习理论知识系统学习核心知识:依据考试大纲,对PostgreSQL的体系结构、数据类型、SQL语言、事务处理、存储过程、索引等核心知识进行系统学习。可以参考《PostgreSQL10HighPerformance》《ProPostgreSQL》等书籍,深入理解原理和概念。研究官方文档:Post
- AI学习预备知识-数据操作(3)广播机制
羞涩的小吉他
人工智能学习
AI学习预备知识-数据操作(3)广播机制提示:本系列持续更新中文章目录AI学习预备知识-数据操作(3)广播机制前言广播机制总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,在以往系列中我们提到了相同形状的张量按元素操作,那不同形状的张量操作就涉及到本文主要讲解AI学习储备知识–广播机制。广播机制提示:默认使用python,数据操作使用
- k8s部署springcloud-alibaba项目
封印di恶魔
kubernetesspringcloudk8s
本文由个人总结,如需转载使用请标明原著及原文地址本文需要一些知识储备,有一定的自学能力,有一定的自行解决问题的能力,不然直接看的话压力会比较大,建议有一定知识储备后作为提升来学本文的前置条件是会docker,还要有两台以上的虚拟机,还不了解的可以先看我前一篇文章centos8安装docker运行java文件_centos8docker安装java8-CSDN博客本文是我在完整搭建完整个系统后再这里
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- Python小实验——归结反演
我没得冰阔落.
人工智能python人工智能
实验目的打印所有互补文字;头现命题逻辑简单归结;实验内容及结果#归结反演过程,传入外面最大的数组里面的两个小数组,也就是两个子句,消掉对应的谓词公式defresult(m=[],n=[]):after=0whilelen(m)!=after:after=len(m)foriinm:forjinn:if(
- OFDR技术光纤传感解调原理
昊衡科技
OFDR原理与测试案例分布式
一、OFDR传感原理OFDR技术可以获取整根光纤的瑞利散射信息,可以通过测量瑞利散射信号位置及强度发生的改变,来反演出整根光纤各个位置的应变分布情况。将光纤传感器布设于待测结构中,通过胶水粘连光纤和待测物会协调形变,通过测试光纤沿线应变分布可以反映出待测物的应变分布,进而实现光纤的传感测量。OFDR系统可以用于高分辨的应变温度分布式测量。图1OFDR传感解调原理OFDR系统中光纤的瑞利散射是由于光
- Python与C进行混合编程
程序员AlbertTu
PythonPython开发者Python的C++扩展
目录写在前面在vs中建立一个工程设置调整step1选择输出目录step2改变目标文件拓展名step3添加附加目录step4添加附加库目录step5添加附加依赖项知识储备条件编译简单例程程序测试补充说明写在前面 阅读这篇文章需要一定的C/C++和Python基础,阅读完这篇文章,你将能够开发简单的Python的库。 笔者所使用的C++编译器是vs2017,所使用的Python版本是Python3
- 目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测
林聪木
无人机目标检测人工智能
目录知识储备YOLOv8无人机拍摄视角小目标检测数据集结构环境部署说明安装依赖模型训练权重和指标可视化展示训练YOLOv8PyQt5GUI开发主窗口代码main_window.py使用说明无人机目标跟踪一、目标跟踪的基本原理二、常用的目标跟踪算法基于YOLOv8+图像分割优化关键优化策略(基于VisDrone数据集实验验证)1.模型结构改进2.数据增强策略3.后处理优化4.训练技巧三、性能优化建议
- java面试知识点总结-sql篇
weixin_42677025
面试职场和发展sql数据库后端java
年底了,准备离职换工作了,在做面试准备时,发现自己的知识体系太零散,理论知识储备匮乏,之前也没有特别系统的去进行梳理,正好趁这次机会梳理一下知识体系,一方面为面试做准备,另一方面后续工作中设计到相关知识点时可以迅速定位到相关知识点,总结中会夹杂着面试问题或者知识点在工作中的实际应用。sql索引创建时,创建字段顺序对查询速度有影响吗?有关系,索引本身是一个排序的列表,存储这索引值和数据所在行的物理地
- 解锁C++学习密码,从入门到精通不是梦
大雨淅淅
C++开发c++学习开发语言
目录一、为什么选择C++二、新手入门:夯实基础(一)前置知识储备(二)C++基础语法学习(三)开发环境搭建三、进阶提升:深入学习(一)C++标准库探秘(二)面向对象编程(OOP)(三)泛型编程与模板四、高阶拓展:掌握高级特性(一)内存管理与指针(二)异常处理(三)多线程编程五、实战演练:项目实践(一)小型项目实践(二)参与开源项目六、持续学习:保持进步(一)阅读优秀代码(二)关注行业动态(三)参加
- Go爬虫学习笔记_go爬虫的知识储备
2401_86372470
golang爬虫学习
接口空接口定义、声明实现调用组合断言动态类型v.(type)比较并发协程通道声明、初始化读写关闭作为参数作为返回值单方向的通道,用于只读和只写场景select,随机执行context协程优雅退出级联退出原子锁:atomic互斥锁读写锁:适合多读少写场景。sync.Once、sync.Cond、sync.WaitGroup项目组织依赖管理:gomod组合工具与库编辑测试:编译部署:调试分析工具:代码
- 深度学习入门篇--来瞻仰卷积神经网络的鼻祖LeNet
智算学术
深度学习图像分类篇深度学习
B站视频讲解:深度学习入门篇:使用pytorch搭建LeNet网络并代码详解实战前言大家在学习神经网络的时候肯定会有这样的感受,有很多的文章和视频,有的文章也很好,但是总是不成体系,总是学起来东一榔锤,西一棒槌的,在这种情况下,我会给大家更新深度学习系列的技术文章,轮椅级持续更新技术干货,别问为什么是轮椅级,因为保姆级已经过时了!前置基础知识储备:python/pytorch/神经网络基础知识概念
- DeepSeek Prompt指南
deepseek
序本文主要研究一下如何写出更适合DeepSeek的Prompt官方提示库DeepSeekAPI文档-提示库提供了一些DeepSeek提示词样例。比较有用的是这个【模型提示词生成】你是一位大模型提示词生成专家,请根据用户的需求编写一个智能助手的提示词,来指导大模型进行内容生成,要求:1.以Markdown格式输出2.贴合用户需求,描述智能助手的定位、能力、知识储备3.提示词应清晰、精确、易于理解,在
- 近地面无人机植被定量遥感与生理参数反演
岁月如歌,青春不败
生态遥感无人机遥感植被遥感生态科学生态模型植被科学农林
一:近十年近地面无人机植被遥感文献分析,传感器选择,观测方式及质量控制要点1.1.近十余年无人机植被遥感文献分析文献分析软件VOSviewer的使用无人机植被遥感的重点研究方向、研究机构、科学家家1.2.无人机遥感的特点及与卫星遥感的差异核心优势与四大基本特点无人机与卫星遥感影像的成像方式差异异1.3.无人机传感器类型、特点及选择消费级RGB相机的简要成像几何与光谱特点多光谱相机成像类型与核心问题
- 开源的 Three.js 编辑器 组态低代码
2201_75964656
开源javascript编辑器webgl前端着色器低代码
官网:https://threehub.cn/editor/使用Three.js编辑器简单编辑开发历程低代码的开发是非常曲折的,尤其是早期根本没有任何参考作品或者相关的一些知识博客去引领我们去做,会经历多次的推到再到重头再来,又需要开发者有很高的知识储备,举步维艰。,目前web二维在市场上已经非常普遍,而web三维低代码普及率并不是很高。以下是我的一些的编辑器功能分布,希望能对你有一些启发,让你少
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 如何学习ARM嵌入式系统的设计
AAAA%
学习嵌入式硬件单片机
学习ARM嵌入式系统设计是一个系统性的过程,需要理论知识与实践技能相结合。以下是一份详细的学习路径指南,帮助你逐步掌握ARM嵌入式系统的设计:1.基础知识储备了解计算机体系结构:学习计算机组成原理,了解CPU、内存、IO等基本概念。学习C语言编程:C语言是嵌入式系统开发的主流语言,需要熟练掌握。理解操作系统原理:虽然嵌入式系统可能不总是运行完整的操作系统,但了解操作系统的基本概念对于理解系统设计至
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro