- 机器学习算法实现刑事案件文本分类
deleteeee
机器学习分类人工智能自然语言处理pythonsklearnscikit-learn
一、背景随着我国法制建设不断健全,法规日趋完善,人们的法律意识也越来越强。当前,随着越来越多的法律文本公开,为犯罪案件审理这个方面的挖掘积累了大量的文本内容。因此,通过收集法律与犯罪领域文本,构建起司法领域语料库,使用自然语言处理技术进行挖掘,实现文本分类,并利用机器学习等技术实现对法律案件的预测具有重要意义。文本分类算法,是计算机对文本集合按照事先定义好的类别体系进行自动分类标记的技术,它根据一
- 机器学习大作业--Python城市空气质量的分析与预测
黎明的前夜
机器学习实验和大作业课程设计机器学习支持向量机lstm决策树线性回归
需要完整项目源码和论文报告可以私信我或加QQ1878073201机器学习大作业–基于机器学习算法、KNN、SVM、LSTM、决策树、随机森林、线性回归分析对空气质量的分类、识别和预测:本文针对江西省南昌市2022年空气质量问题,采用各种机器学习算法实现其分类、知识、预测等。文中采用了基于SVM的图像分类或归类、深度学习模型LSTM、决策树、随机森林和线性回归分析等方法,对南昌市空气质量进行了研究和
- ML:使用线性回归实现多项式拟合
ACphart
介绍注意:这里的代码都是在JupyterNotebook中运行,原始的.ipynb文件可以在我的GitHub主页上下载https://github.com/acphart/Hand_on_ML_Algorithm其中的LinearRegression_multi_polynomal.ipynb,直接在JupyterNotebook中打开运行即可,里面还有其他的机器学习算法实现,喜欢可以顺便给个st
- [网络安全提高篇] 一二三.恶意样本分类之基于API序列和深度学习的恶意家族分类详解
Eastmount
网络安全自学篇web安全深度学习恶意样本分类API序列CNN
终于忙完初稿,开心地写一篇博客。“网络安全提高班”新的100篇文章即将开启,包括Web渗透、内网渗透、靶场搭建、CVE复现、攻击溯源、实战及CTF总结,它将更加聚焦,更加深入,也是作者的慢慢成长史。换专业确实挺难的,Web渗透也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现
- 【R语言因果推断】0-1:因果推断概述
JOJO数据科学
R语言数据科学r语言
专栏介绍个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言因果推断、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每
- 经典机器学习算法的极简实现(Python+NumPy)
木亦有知
大三的时候曾花两个星期学习了几个经典的机器学习算法,学习方法主要是白天参考《统计学习方法》推导公式,晚上利用公式编写实现。在参考GitHub上算法实现时,我发现其中大多数都比较繁杂冗长,很难体现出算法的核心思想。因此我特地找出了以前的机器学习算法实现,在修改整理后分享给大家(GitHub地址)。所有算法的实现都没有使用其他机器学习库。希望可以帮助大家对机器学习算法及其本质原理有个基本的了解,但并不
- 机器学习算法实现(基于numpy)
Jiawen9
#《机器学习代码实现》学习笔记机器学习算法numpypython人工智能数据挖掘
《机器学习公式推导与代码实现》学习笔记,记录一下自己的学习过程,详细的内容请大家购买作者的书籍查阅。这篇博客是将笔者边学边刷《机器学习公式推导与代码实现》的模型跟代码记录下来,部分地方结合自己的思考对原作者的代码有一定的改动,这些博客主要是动手去实现一些模型,感受机器学习各个模型能解决的问题以及收敛后的效果,所以对相关理论没有过于深入。一.监督学习模型chapter3-对数几率回归logistic
- 数据科学软件likeweka
哈都婆
机器学习hadoop搭建管理教程sql数据库python数据分析信息可视化
题目:项目完成人:202160362韩东平(组长)、202160362唐骏(组员)语言及安装包:本软件基于python语言,在Pycharm/Jupyter中完成脚本开发;需安装PyQt5包、PIL、sklearn、matplotlib包,软件才能顺利运行本程序。一、功能介绍本软件是一个数据科学软件,旨在提供数据处理、分析、机器学习算法实现、和可视化的功能。以下是软件的主要功能:1.数据导入:支持
- ML:自己动手实现单变量线性回归算法
ACphart
介绍注意:这里的代码都是在JupyterNotebook中运行,原始的.ipynb文件可以在我的GitHub主页上下载https://github.com/acphart/Hand_on_ML_Algorithm其中的LinearRegression_single_variabel.ipynb,直接在JupyterNotebook中打开运行即可,里面还有其他的机器学习算法实现,喜欢可以顺便给个st
- 【机器学习基础】数学推导+纯Python实现机器学习算法25:CatBoost
风度78
算法人工智能机器学习深度学习数据分析
Python机器学习算法实现Author:louwillMachineLearningLab本文介绍GBDT系列的最后一个强大的工程实现模型——CatBoost。CatBoost与XGBoost、LightGBM并称为GBDT框架下三大主流模型。CatBoost是俄罗斯搜索巨头公司Yandex于2017年开源出来的一款GBDT计算框架,因其能够高效处理数据中的类别特征而取名为CatBoost(Ca
- 【机器学习基础】数学推导+纯Python实现机器学习算法27:EM算法
风度78
算法python机器学习人工智能深度学习
Python机器学习算法实现Author:louwillMachineLearningLab从本篇开始,整个机器学习系列还剩下最后三篇涉及导概率模型的文章,分别是EM算法、CRF条件随机场和HMM隐马尔科夫模型。本文主要讲解一下EM(Expectionmaximization),即期望最大化算法。EM算法是一种用于包含隐变量概率模型参数的极大似然估计方法,所以本文从极大似然方法说起,然后推广到EM
- 【机器学习基础】数学推导+纯Python实现机器学习算法24:HMM隐马尔可夫模型
风度78
算法python机器学习深度学习人工智能
Python机器学习算法实现Author:louwillMachineLearningLabHMM(HiddenMarkovModel)也就是隐马尔可夫模型,是一种由隐藏的马尔可夫链随机生成观测序列的过程,是另一种经典的概率图模型。本文在阐述HMM的基本定义和相关概念的基础上,引申出HMM的三个重要问题:估计算法、学习算法和预测算法问题,并给出相应的代码实现方式。HMM的定义与相关概念HMM是关于
- R语言caret机器学习(一)数据可视化:绘制特征变量图
JOJO数据科学
R语言数据科学r语言机器学习数据可视化
【R语言数据科学】个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每周持续
- 【机器学习基础】数学推导+纯Python实现机器学习算法28:CRF条件随机场
风度78
算法机器学习人工智能深度学习python
Python机器学习算法实现Author:louwillMachineLearningLab本文我们来看一下条件随机场(ConditionalRandomField,CRF)模型。作为概率图模型的经典代表之一,CRF理解起来并不容易。究其缘由,还是在于CRF模型过于抽象,大量的概率公式放在一起时常让人犯晕。还有就是即使理解了公式,很多朋友也迷惑CRF具体用在什么地方。所以在本文的开头,我们先具体化
- 机器学习:公式推导与代码实现全书代码!
机器学习与AI生成创作
算法机器学习人工智能pythongithub
今年新书《机器学习:公式推导与代码实现》目前在印刷中,本月底即将出版,现开源本书全部章节代码。全书总共6大部分26个章节,包括入门、监督学习单模型、监督学习集成模型、无监督学习模型、概率模型和总结。书预计下半年可出版,全书代码仓库经过修改和整理之后先提前分享给各位读者。仓库的一些机器学习算法实现借鉴了一些GitHub上一些优秀的仓库代码,整体上力争做到简洁和基于NumPy搭建。每一个机器学习算法都
- 机器学习模型的超参数优化
喜欢打酱油的老鸟
人工智能
作者|deephub责编|王晓曼出品|CSDN博客头图|CSDN付费下载自东方IC引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。
- 模型效果差?我建议你掌握这些机器学习模型的超参数优化方法
Python数据挖掘
机器学习python超参数
模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的ccc参数和γ\gammaγ参数k近
- python识别手写数字_不用框架,Python识别手写数字
weixin_39691748
python识别手写数字
有一句话说得好,要有造轮子的技术和用轮子的觉悟近年来人工智能火的不行,大家都争相学习机器学习,作为学习大军中的一员,我觉得最好的学习方法就是用python把机器学习算法实现一遍,下面我介绍一下用逻辑回归实现手写数字的识别。逻辑回归知识点回顾线性回归简单又易用,可以进行值的预测,但是不擅长分类。在此基础上进行延伸,把预测的结果和概率结合起来就可以做分类器了,比如预测值大于0.5,则归为1类,否则就归
- 【机器学习基础】数学推导+纯Python实现机器学习算法17:XGBoost
风度78
Python机器学习算法实现Author:louwillMachineLearningLab自从陈天奇于2015年提出XGBoost以来,该模型就一直在各大数据竞赛中当作大杀器被频繁祭出。速度快、效果好是XGBoost的最大优点。XGBoost与GBDT同出一脉,都属于boosting集成学习算法,但XGBoost相较于GBDT要青出于蓝而胜于蓝。XGBoost的全程为eXtremeGradien
- 数学推导+纯Python实现马尔可夫链蒙特卡洛
文文学霸
Python机器学习算法实现Author:louwillMachineLearningLab蒙特卡洛(MonteCarlo,MC)方法作为一种统计模拟和近似计算方法,是一种通过对概率模型随机抽样进行近似数值计算的方法。马尔可夫链(MarkovChain,MC)则是一种具备马尔可夫性的随机序列。将二者结合起来便有了马尔可夫链蒙特卡洛方法(MarkovChainMonteCarlo,MCMC),即是以
- 深度学习+迁移学习资料整理
Marko编程
python深度学习机器学习人工智能神经网络
文章目录前言一、Python机器学习1.1sklearn库的学习二、深度学习框架2.1CNN三、迁移学习3.1迁移学习代码四、工具整理前言对在个人学习过程中收集到的资料进行整理,仅供参考,持续更新(收藏=学会)。一、Python机器学习1.1sklearn库的学习官方文档地址:官方文档跳转使用python中的sklearn扩展库,可以利用其提供的机器学习算法实现特征子集的筛选学习参考链接:1.Py
- 【机器学习算法实现】主成分分析(PCA)——基于python+numpy
ChuShengWHU
机器学习pythonNumpy
【机器学习算法实现】主成分分析(PCA)——基于python+numpy@author:wepon@blog:http://blog.csdn.net/u012162613/article/details/421773271、PCA算法介绍主成分分析(PrincipalComponentsAnalysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如10
- 使用机器学习算法实现单细胞测序数据的降维及聚类(一)
今天练习代码了吗
机器学习--单细胞聚类
主要代码参考于此,感谢b站大学主要代码参考于此,感谢GitHub老师本篇主要记录一下几种常用的降维算法数据集和文中代码可从我的gitee中中获取数据是darmanis数据集,包括466个细胞2000个高表达量基因,分为九种类型的细胞集群。数据部分截图:其中行为基因列为细胞,每个数据表示基因在细胞中的表达量。1.PCAimportnumpyasnpimportmatplotlib.pyplotasp
- 【R语言数据科学】:变量选择(三)主成分回归和偏最小二乘回归
JOJO数据科学
R语言数据科学r语言回归开发语言
变量选择(三)主成分回归和偏最小二乘回归个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学
- 【机器学习基础】数学推导+纯Python实现机器学习算法12:贝叶斯网络
风度78
Python机器学习算法实现Author:louwill在上一讲中,我们讲到了经典的朴素贝叶斯算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常过于严格,在实际中很难成立。特征之间的相关性限制了朴素贝叶斯的性能,所以本节笔者将继续介绍一种放宽了条件独立假设的贝叶斯算法——贝叶斯网络(BayesianNetwork)。贝叶斯网络的直观例子先以一个例子进行引入。假设
- 【机器学习基础】数学推导+纯Python实现机器学习算法18:奇异值分解SVD
风度78
Python机器学习算法实现Author:louwillMachineLearningLab奇异值分解(SingularValueDecomposition,SVD)作为一种常用的矩阵分解和数据降维方法,在机器学习中也得到了广泛的应用,比如自然语言处理中的SVD词向量和潜在语义索引,推荐系统中的特征分解,SVD用于PCA降维以及图像去噪与压缩等。作为一个基础算法,我们有必要将其单独拎出来在机器学习
- 纯Python实现机器学习算法:贝叶斯网络
銨靜菂等芐紶
PythonPython贝叶斯网络
Python机器学习算法实现在上一讲中,我们讲到了经典的朴素贝叶斯算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常过于严格,在实际中很难成立。特征之间的相关性限制了朴素贝叶斯的性能,所以本节笔者将继续介绍一种放宽了条件独立假设的贝叶斯算法——贝叶斯网络(BayesianNetwork)。贝叶斯网络的直观例子先以一个例子进行引入。假设我们需要通过头像真实性、粉丝
- 【机器学习基础】数学推导+纯Python实现机器学习算法30:系列总结与感悟
风度78
算法人工智能机器学习深度学习xhtml
Python机器学习算法实现Author:louwillMachineLearningLab终于到了最后的总结。从第一篇线性回归的文章开始到现在,已经接近有两年的时间了。当然,也不是纯写这30篇文章用了这么长时间,在第14篇Ridge回归之后中间断更了10个多月,好在今年抽出时间把全部补齐了。一点总结整个系列对常用的、主流的机器学习模型与算法进行了梳理,主题只有两个,一个是数学推导,一个手写实现。
- gridsearchcv参数_机器学习模型的超参数优化
weixin_39897218
gridsearchcv参数
引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的参数和参数k近邻算法中的参数……
- randomforestregressor参数_机器学习中的超参数优化
weixin_39601194
机器学习中val
引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的ccc参数和γgammaγ参数k
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开