Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 22601 | Accepted: 11134 |
Description
Input
Output
Sample Input
10 9 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 10 4 2 3 4 5 4 8 5 8 0 0
Sample Output
Case 1: 1 Case 2: 7
【题目来源】
Alberta Collegiate Programming Contest 2003.10.18
http://poj.org/problem?id=2524
【题目大意】
让你统计学校里总共有多少宗教。你不可以去问每个同学的宗教,有些同学不愿说出自己的宗教,解决这个问题的一个方法是:你可以去询问m对同学他们是否有相同的宗教。通过题目给的数据求出在
学校里有多少个宗教。你可以假设每个同学至少信仰一种宗教。
【题目分析】
简单的并查集水题。判断这两个同学是否属于同一宗教,然后统计。
AC代码:
#include<iostream> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<algorithm> #include<bitset> #define MAX 500000 using namespace std; int n,m; int a[MAX][2]; int parent[MAX]; int Find(int x) { if(x!=parent[x]) x=Find(parent[x]); return x; } int main() { int kase=1; while(scanf("%d%d",&n,&m),n||m) { int i,j; for(i=0;i<MAX;i++) parent[i]=i; for(i=0;i<m;i++) scanf("%d%d",&a[i][0],&a[i][1]); int cnt=0; int q,w; printf("Case %d: ",kase++); for(i=0;i<m;i++) { q=Find(a[i][0]); w=Find(a[i][1]); if(q!=w) parent[q]=w; } for(i=0;i<n;i++) if(parent[i]==i) cnt++; printf("%d\n",cnt); } return 0; }
下面是关于并查集的一些介绍,转自别人的博客。
并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有求连通子图、求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等。
使用并查集时,首先会存在一组不相交的动态集合 S={S1,S2,⋯,Sk},一般都会使用一个整数表示集合中的一个元素。
每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表。每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为代表一般也是不关心的。我们关心的是,对于给定的元素,可以很快的找到这个元素所在的集合(的代表),以及合并两个元素所在的集合,而且这些操作的时间复杂度都是常数级的。
并查集的基本操作有三个:
并查集的实现原理也比较简单,就是使用树来表示集合,树的每个节点就表示集合中的一个元素,树根对应的元素就是该集合的代表,如图 1 所示。
图 1 并查集的树表示
图中有两棵树,分别对应两个集合,其中第一个集合为 {a,b,c,d},代表元素是 a;第二个集合为 {e,f,g},代表元素是 e。
树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。
现在,应该可以很容易的写出 makeSet 和 find 的代码了,假设使用一个足够长的数组来存储树节点(很类似之前讲到的静态链表),那么 makeSet 要做的就是构造出如图 2 的森林,其中每个元素都是一个单元素集合,即父节点是其自身:
图 2 构造并查集初始化
相应的代码如下所示,时间复杂度是 O(n):
1
2
3
4
5
6
|
const
int
MAXSIZE = 500;
int
uset[MAXSIZE];
void
makeSet(
int
size) {
for
(
int
i = 0;i < size;i++) uset[i] = i;
}
|
接下来,就是 find 操作了,如果每次都沿着父节点向上查找,那时间复杂度就是树的高度,完全不可能达到常数级。这里需要应用一种非常简单而有效的策略——路径压缩。
路径压缩,就是在每次查找时,令查找路径上的每个节点都直接指向根节点,如图 3 所示。
图 3 路径压缩
我准备了两个版本的 find 操作实现,分别是递归版和非递归版,不过两个版本目前并没有发现有什么明显的效率差距,所以具体使用哪个完全凭个人喜好了。
1
2
3
4
5
6
7
8
9
10
|
int
find(
int
x) {
if
(x != uset[x]) uset[x] = find(uset[x]);
return
uset[x];
}
int
find(
int
x) {
int
p = x, t;
while
(uset[p] != p) p = uset[p];
while
(x != p) { t = uset[x]; uset[x] = p; x = t; }
return
x;
}
|
最后是合并操作 unionSet,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,如图 4 所示。
图 4 并查集的合并
这里也可以应用一个简单的启发式策略——按秩合并。该方法使用秩来表示树高度的上界,在合并时,总是将具有较小秩的树根指向具有较大秩的树根。简单 的说,就是总是将比较矮的树作为子树,添加到较高的树中。为了保存秩,需要额外使用一个与 uset 同长度的数组,并将所有元素都初始化为 0。
1
2
3
4
5
6
7
8
|
void
unionSet(
int
x,
int
y) {
if
((x = find(x)) == (y = find(y)))
return
;
if
(rank[x] > rank[y]) uset[y] = x;
else
{
uset[x] = y;
if
(rank[x] == rank[y]) rank[y]++;
}
}
|
下面是按秩合并的并查集的完整代码,这里只包含了递归的 find 操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
const
int
MAXSIZE = 500;
int
uset[MAXSIZE];
int
rank[MAXSIZE];
void
makeSet(
int
size) {
for
(
int
i = 0;i < size;i++) uset[i] = i;
for
(
int
i = 0;i < size;i++) rank[i] = 0;
}
int
find(
int
x) {
if
(x != uset[x]) uset[x] = find(uset[x]);
return
uset[x];
}
void
unionSet(
int
x,
int
y) {
if
((x = find(x)) == (y = find(y)))
return
;
if
(rank[x] > rank[y]) uset[y] = x;
else
{
uset[x] = y;
if
(rank[x] == rank[y]) rank[y]++;
}
}
|
除了按秩合并,并查集还有一种常见的策略,就是按集合中包含的元素个数(或者说树中的节点数)合并,将包含节点较少的树根,指向包含节点较多的树根。这个策略与按秩合并的策略类似,同样可以提升并查集的运行速度,而且省去了额外的 rank 数组。
这样的并查集具有一个略微不同的定义,即若 uset 的值是正数,则表示该元素的父节点(的索引);若是负数,则表示该元素是所在集合的代表(即树根),而且值的相反数即为集合中的元素个数。相应的代码如下所示,同样包含递归和非递归的 find 操作:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
const
int
MAXSIZE = 500;
int
uset[MAXSIZE];
void
makeSet(
int
size) {
for
(
int
i = 0;i < size;i++) uset[i] = -1;
}
int
find(
int
x) {
if
(uset[x] < 0)
return
x;
uset[x] = find(uset[x]);
return
uset[x];
}
int
find(
int
x) {
int
p = x, t;
while
(uset[p] >= 0) p = uset[p];
while
(x != p) {
t = uset[x];
uset[x] = p;
x = t;
}
return
x;
}
void
unionSet(
int
x,
int
y) {
if
((x = find(x)) == (y = find(y)))
return
;
if
(uset[x] < uset[y]) {
uset[x] += uset[y];
uset[y] = x;
}
else
{
uset[y] += uset[x];
uset[x] = y;
}
}
|
如果要获取某个元素 x 所在集合包含的元素个数,可以使用 -uset[find(x)] 得到。
并查集的空间复杂度是 O(n) 的,这个很显然,如果是按秩合并的,占的空间要多一些。find 和 unionSet 操作都可以看成是常数级的,或者准确来说,在一个包含 n 个元素的并查集中,进行 m 次查找或合并操作,最坏情况下所需的时间为 O(mα(n)),这里的 α 是 Ackerman 函数的某个反函数,在极大的范围内(比可观察到的宇宙中估计的原子数量 1080 还大很多)都可以认为是不大于 4 的。具体的时间复杂度分析,请参见《算法导论》的 21.4 节 带路径压缩的按秩合并的分析。