COCO 目标检测评价指标(官网)
The evaluation metrics for detection with bounding boxes and segmentation masks are identical in all respects except for the IoU computation (which is performed over boxes or masks, respectively).
目标检测和分割评价指标仅是 IoU 的计算方式不同
Thesholding the IoU defines matches between the ground truth and predicted objects and allows computing precision-recall curves.
2017 MS COCO 数据集
over 200,000 images and 250,000 person instance,17 keypoints
17 个关键点,多人
"keypoints": [
"nose",
"left_eye",
"right_eye",
"left_ear",
"right_ear",
"left_shoulder",
"right_shoulder",
"left_elbow",
"right_elbow",
"left_wrist",
"right_wrist",
"left_hip",
"right_hip",
"left_knee",
"right_knee",
"left_ankle",
"right_ankle"
]
图片来自 COCO Dataset person_keypoints.json 解析
在 COCO annotation 中,关键点的描述是一个长度为 51 维的列表,每三个表示一个关键点 ( x , y , v ) (x,y,v) (x,y,v), v v v 是 flag
更详细的总结与可视化可以参考 MSCOCO数据标注详解
COCO 人体关键点检测评价指标(官网)
定义了 object keypoint similarity (OKS) which plays the same role as the IoU.
d,预测的关键点和 GT 之间的欧几里得距离
s,scale 的控制,表示这个人所占的面积大小平方根, 根据 groundtruth 里人的 box 计算得到,注意,比例是固定的,eg 192:256,大小为实际 bbox 的 1.25 倍
k,表示骨骼点的归一化因子,这个因子是通过对已有的数据集中所有 groundtruth 计算的标准差而得到的,反映出当前骨骼点对与整体的影响程度。值越大,说明在整个数据集中对这个点的标注效果越差; 值越小,说明整个数据集中对这个点的标注效果越好!一般取 2 σ \sigma σ,其中
v,visibility flag
v = 0,GT 没有点
v = 1,GT 有点但是看不见(被遮挡)
v = 2, GT 有点也看得见
代码可以参考下这个(做 NMS 时,计算得分最高框框的 key-points 和其他框框中 key-point 的 oks):
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/lib/nms/nms.py
def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None):
if not isinstance(sigmas, np.ndarray):
sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
vars = (sigmas * 2) ** 2
xg = g[0::3]
yg = g[1::3]
vg = g[2::3]
ious = np.zeros((d.shape[0]))
for n_d in range(0, d.shape[0]):
xd = d[n_d, 0::3]
yd = d[n_d, 1::3]
vd = d[n_d, 2::3]
dx = xd - xg
dy = yd - yg
e = (dx ** 2 + dy ** 2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
if in_vis_thre is not None:
ind = list(vg > in_vis_thre) and list(vd > in_vis_thre)
e = e[ind]
ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0
return ious
注意上述代码面积的计算,是两个面积加起来除以2,没有平方,np.spacing(1)
超级小的数,防止分母为 0
再看看 coco API 中计算 OKS 的代码,来自
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
def computeOks(self, imgId, catId):
p = self.params
# dimention here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = p.kpt_oks_sigmas
vars = (sigmas * 2)**2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt['bbox']
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt['keypoints'])
xd = d[0::3]; yd = d[1::3]
if k1>0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
if k1 > 0:
e=e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
核定部分
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
与 nms 计算 oks 时差别仅在于计算面积的时候,注意两者都没有进行面积的平方
e = (dx**2 + dy**2) / vars / ((a_g+a_d[n_d]) / 2+np.spacing(1)) / 2
参考
上面分析可以看出,该方法的错误 dominated by imperfect localization, mostly jitter errors, and missed detections