- OpenHarmony 5.0.2 Release来了!
MardaWang
版本概述OpenHarmony5.0.2Release版本对标准系统的能力进行持续完善,以快速迭代的方式推出API14,相比5.0.1Release版本,重点做出了如下特性新增或增强:进一步增强ArkUI、图形图像的能力,提供更多组件的高级属性设置,支持更多精致动效;进一步增强Web能力,满足更多应用诉求;针对2in1设备特点,新增一系列窗口管理和控制的能力及窗口生命周期行为管理;新增一批企业定制
- 算法学习019 BFS实现迷踪步 c++算法学习 中小学算法思维学习 比赛算法题解 信奥算法解析
小兔子编程
信奥算法详解算法宽度优先BFSC++BFS广度优先算法c++迷宫步数c++迷踪步
C++BFS实现迷踪步一、题目要求1、编程实现有一个n行m列的方格迷宫,用0表示可以通过,用1表示不可以通过,每一步可以向上、下、左、右任意方向移动一格,请计算从左上角(1,1)位置移动到右下角(n,m)位置,最少移动多少步?2、输入输出输入描述:第一行输入矩阵大小n和m
- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 基于Canny边缘检测和轮廓检测
如若123
opencv人工智能计算机视觉
这段代码实现了基于Canny边缘检测和轮廓检测,从图像中筛选出面积较大的矩形,并使用OpenCV和Matplotlib显示结果。主要流程如下:步骤详解:读取图像:img=cv2.imread('U:/1.png')使用cv2.imread()加载图像。转换为灰度图像:gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)使用cv2.cvtColor()将图像从BGR色彩
- 提取图片颜色信息转数据信息
~夕上林~
图像处理matlab
提取图片颜色信息转数据信息背景:给定原始图片如下,数据范围为0~2π\piπ,如何通过给定图片,提取出来对应的数据信息。目录提取图片颜色信息转数据信息分析颜色模型图像预处理图像修复图片重建和裁剪提取数据分析原始图片存在两个数据图Transmittedwave和Reflectedwave,接下来将其简称为c图和d图。两数据图的颜色范围和数据范围均一致,之后以c图进行分析:项目Value长lll2.2
- 对STM32芯片架构及固件库的理解
小欧不要怂
STM32学习stm32架构嵌入式硬件
一、STM32芯片的基本架构1、STM32内部组成STM32芯片,其实就是一台功能阉割的电脑,属于片上SOC的一种。里面包含有Cortex-M、RAM、FLASH等组件。图中所示为STM32F1芯片的内部架构。以日常生活中使用的电脑为例:(1)内核Cortex-M:相当于X86电脑的CPU;(2)总线矩阵:内核和外部设备进行交互的时候需要总线矩阵进行通信,这个总线矩阵就像是台式机上的南北桥,实现数
- 《网络安全之多维护盾:零信任架构、加密矩阵与智能检测的交响制衡》
烁月_o9
网络服务器安全运维密码学
网络安全之多维护盾:零信任架构、加密矩阵与智能检测的交响制衡一、引言在数字化浪潮汹涌澎湃的当下,网络空间已深度渗透到社会的各个层面,成为推动全球经济、文化交流以及科技创新的核心引擎。然而,与之相伴的是网络安全威胁的指数级增长与日益复杂化。恶意黑客攻击、数据泄露事件频发,不仅对企业的生存与发展构成严重威胁,更对个人隐私、国家安全等诸多方面带来了前所未有的挑战。在这样的严峻形势下,构建一套全面、高效且
- 数据挖掘中的关联规则--面向频繁项集的A-Priori算法
绒绒毛毛雨
大数据挖掘算法数据挖掘python
文章目录一、频繁项集与关联规则学习1.实体与关系2.支持度与频繁项集3.关联规则二、寻找频繁项集1.频繁项集发现的挑战三角矩阵项对计数值的三元组存储方法2.频繁项集的单调性3.面向项对的A-Priori算法4.PCY算法哈希表创建第二遍扫描5、多阶段算法6、多哈希算法7、随机化算法8、SON算法9、Toivonen算法三、频繁项集小实践:消费者购买记录模拟数据示例具体问题分析一、频繁项集与关联规则
- 全网最最实用--教你用gradio搭网页、部署模型等(代码粘贴即用、不讲虚的)
绒绒毛毛雨
大模型算法microsoft前端语言模型人工智能ai
文章目录〇前言一、构建网页1.各个组件介绍a.文本输入和输出b.图像输入和输出c.音频输入和输出d.视频输入和输出e.文件上传和下载f.滑块(`Slider`)g.单选按钮(`Radio`)h.复选框(`CheckboxGroup`)j.数据表格(`Dataframe`)2.一个网页示例代码a.按钮使用指南(事件处理和回调)3.整个网页代码b.整个网页展示二、构建ai任务a.构建一个自己的大语言模
- LGBMRegressor CatBoostRegressor XGBRegressor回归
兔兔爱学习兔兔爱学习
竞赛代码实践回归数据挖掘
importpandasaspd#导入csv文件的库importnumpyasnp#进行矩阵运算的库importpolarsaspl#和pandas类似,但是处理大型数据集有更好的性能.#用于对一组元素计数,一个存在默认值的字典,访问不存在的值时抛出的是默认值fromcollectionsimportCounter,defaultdictimportre#用于正则表达式提取fromscipy.st
- dfs专题五:FloodFill算法
lisanndesu
算法深度优先
1.图像渲染link:733.图像渲染-力扣(LeetCode)codeclassSolution{public:intprev;vector>floodFill(vector>&image,intsr,intsc,intcolor){if(image[sr][sc]==color)returnimage;prev=image[sr][sc];dfs(image,sr,sc,color);retu
- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- AHK的相似取色
睡不醒的小泽
#AHK自动化Autohotkey
简介PixelGetColor通常用于在特定像素处获取单一颜色值,这对于大多数应用程序来说是足够的。然而,一些带有反作弊机制的软件,例如《英雄联盟》的外服版本,会对图像进行模糊处理(Fuzz处理)。在这种情况下,我们需要采用一种能够识别颜色相似性的取色方法,以确保逻辑的正确执行。绝对取色先给出绝对取色的代码:;取色组GetColor(x,y){PixelGetColor,color,x,y,RGB
- 细节增强注意力模型DEAB详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能神经网络python计算机视觉机器学习conda
基本原理DEAB模型的基本原理是通过细节增强卷积(DEConv)和内容引导注意力(CGA)机制的协同工作来实现细节增强注意力功能。这种设计使得模型能够在处理图像时更好地保留细节信息,同时关注图像中的重要内容。DEAB模型的核心组件包括:细节增强卷积(DEConv):DEConv是一种创新的卷积层设计,通过并行部署普通卷积和差分卷积来增强特征提取能力。差分卷积包括中心差分卷积(CDC)、角差分卷积(
- Android FFmpeg 实现带滤镜的微信小视频录制功能
攻城狮百里
音视频C/C++C++音视频AndroidFFmpeg
本文将实现对采集的预览帧(添加滤镜)和PCM音频同时编码复用生成一个mp4文件,即实现一个仿微信小视频录制功能。音视频录制编码流程本文采用的是软件编码(CPU)实现,所以针对高分辨率的预览帧时,就需要考虑CPU能不能吃得消,在骁龙8250上使用软件编码分辨率超过1080P的图像就会导致CPU比较吃力,这个时候帧率就跟不上了。音视频录制代码实现Java层视频帧来自AndroidCamera2API回
- 基于ROS的相机和激光雷达离线自动标定
AUBarryRobot
传感器标定数码相机
目录前言理论背景相机和激光雷达标定原理实现思路Reference前言因为本人实际工作中在做视觉和雷达的相关融合工作,所以相机和雷达的传感器之间的位姿RT矩阵则是要首先进行解决的。标定对大部分人来说都很头疼,抵触,在网上进行调研也没有什么太好的方法,或者别人分享的项目和自己的相差很大,根本不适用或者不好复现。而且可能全程比较繁琐,需要手动进行各种操作,运行一大堆程序。我的联合标定程序,只需要采集对应
- 自动化测试工具Ranorex Studio(五十一)-如何做基于图像的自动化
机器视觉小小测试员
自动化ui运维
如何做基于图像的自动化如果Ranorex不能明确地识别某些你的GUI元素,那么使用基于图像的机制来自动化它们将会大有帮助。C#//Createbitmaptosearchfor//withinapplicationformand//clickitBitmapbmp=Ranorex.Imaging.Load(@”..\..\GreenSeaTurtleSmall.bmp”);//Performsar
- 激光线扫相机无2D图像的标定方案
hylreg
数码相机
方案一:基于运动控制平台的标定适用场景:若激光线扫相机安装在可控运动平台(如机械臂、平移台、旋转台)上,且平台的运动精度已知(例如通过编码器或高精度步进电机控制)。步骤:标定物选择:使用具有明确几何特征的三维标定物(如平面、棱柱、球体等),表面需反射激光线。运动轨迹规划:控制平台沿已知方向(如X/Y/Z轴)平移或旋转,记录激光线在标定物上的位置变化。每个运动步长后,获取激光线的三维点云数据。参数优
- QT 笔记
繁缕怀夕
QT笔记
本文详述了QT的基础应用,其中包括基础控件应用、多线程等工具类使用、以及显示2D、3D图像等功能,适用于C++和计算机视觉领域的开发者。1、基础控件QLineEditQComboBoxQMenuQToolBar2、基础功能2.1、多线程线程QThread2.2、多语言静态显示动态切换3、QChart4、QGraphicsView5、PCL之VTK
- plt.show()输出<Figure size 1200x800 with 1 Axes>没有展示出图片在notebook里
热爱生活的五柒
AI相关pythonnotebookpython
解决方法如下:在JupyterNotebook中,如果使用plt.show()没有直接显示图像,可能是由于某些设置或限制导致的。您可以尝试使用%matplotlibinline魔术命令来确保图像能够直接显示在Notebook中。请在Notebook的第一个单元格中执行以下命令:%matplotlibinline然后再次运行您的代码,应该能够在Notebook中看到图像。示例如下:
- 2023-简单点-非极大值抑制NMS
万物琴弦光锥之外
目标跟踪人工智能计算机视觉
非极大值抑制(Non-MaximumSuppression,NMS)是一种在目标检测中常用的后处理技术。NMS能够抑制那些与真实目标重叠较大的冗余检测框,留下最好的一个。非极大值抑制(Non-MaximumSuppression,NMS)的原理是:在目标检测中,对于检测到的冗余框,保留置信度最高的那个,抑制其他与它有较大重叠的冗余框。其基本原理是先在图像中找到所有可能包含目标物体的矩形区域,并按照
- leetcode搜索系列
页图
leetcodec++leetcode
BFS1.计算在网格中从原点到特定点的最短路径长度2.组成整数的最小平方数数量3.最短单词路径DFS1.查找最大的连通面积2.矩阵中的连通分量数目3.好友关系的连通分量数目4.填充封闭区域5.能到达的太平洋和大西洋的区域Backtracking1.数字键盘组合2.IP地址划分3.在矩阵中寻找字符串4.输出二叉树中所有从根到叶子的路径5.排列6.含有相同元素求排列7.组合8.组合求和9.含有相同元素
- 剑指offer_edition2刷题记录
jiandandian_
数据结构与算法java开发语言
剑指offer_edition2刷题记录写在前面:此博客记录刷剑指offer题中遇到的困难和总结,以及过程中难以理解的地方,其中*代表需要过段时间回过头再看的题Q7重建二叉树*(20210421)Q8二叉树的下一个节点(原书涉及到指针,暂时跳过)Q9两个栈实现一个队列附加题两个队列实现一个栈Q10斐波那契数列附加题:青蛙跳台阶附加题:快速排序Q11旋转数组的最小数字*(20210424)Q12矩阵
- P8612 [蓝桥杯 2014 省 AB] 地宫取宝
今天_也很困
蓝桥杯算法职场和发展
题目描述X国王有一个地宫宝库。是n×m个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少
- 矩阵可逆的充要条件及证明
吴天德少侠
线性代数
1.定理设AAA为nnn阶矩阵,则如下命题等价AAA是可逆的AX=0AX=0AX=0只有0解AAA与III行等价AAA可表示为有限个初等矩阵的乘积2.证明2.1证明:1→21\rightarrow21→2已知AAA可逆,证明AX=0AX=0AX=0只有0解。证明:∵A\because\A∵A可逆∴A−1\therefore\A^-1∴A−1存在⇒A−1AX=A−10\Rightarrow\A^{-
- 【AirSim+Python】image API和无人机获取图像
退堂鼓选手⑥
python无人机开发语言
没错!这个还是b站【皮卡丘上大学啦】up主学习的代码。我就是懒!今天下午敲得每一行代码都不能白敲,放在这方便我以后复制!up主原代码分享链接:在这!!!1.imageAPI获取相机图像使用的时候根据自己需求进行注释:importairsimimportnumpyasnpimportcv2#与airsim建立连接client=airsim.MultirotorClient()client.confi
- 使用 Python 和 Tesseract 实现验证码识别
一休哥助手
mfcc++
验证码识别是一个常见且实用的技术需求,尤其是在自动化测试和数据采集场景中。通过开源OCR(OpticalCharacterRecognition,光学字符识别)工具Tesseract,结合Python的强大生态,我们可以高效实现验证码识别任务。本篇博客将以详细步骤和代码示例,介绍如何使用Python和Tesseract实现验证码识别,包括原理解析、图像预处理、代码实现以及优化策略。一、验证码识别的
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin