- 动态规划、背包问题入门
2303_Alpha
动态规划代理模式算法笔记c语言
目录1、动态规划定义2、数塔问题题目描述:思路:代码实现:3、最长有序子序列问题描述:代码实现:动态规划基本思想特点4、背包问题①01背包问题空间复杂度优化②完全背包③多重背包二进制优化④二维费用背包1、动态规划定义动态规划是一种用于解决优化问题的算法策略,它的核心是把一个复杂的问题分解为一系列相互关联的子问题,并通过求解子问题的最优解来构建原问题的最优解。它将一个问题分解为若干个子问题,然后从最
- 深入理解背包问题:从理论到实践
a.原味瓜子
C++算法人工智能
目录一、什么是背包问题?基本概念二、背包问题的常见类型1.0-1背包问题2.完全背包问题3.多重背包问题4.分数背包问题三、0-1背包问题的动态规划解法1.基本思路2.C++实现代码3.空间优化版本四、完全背包问题的解法1.基本思路2.C++实现代码五、背包问题的实际应用六、经典例题与解答例题1:分割等和子集(LeetCode416)例题2:目标和(LeetCode494)七、背包问题的优化技巧八
- 混合背包(01,多重,完全)
YouQian772
动态规划算法
题目描述有N种物品和一个容量是V的背包。物品一共有三类:第一类物品只能用1次(01背包);第二类物品可以用无限次(完全背包);第三类物品最多只能用si次(多重背包);每种体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔
- 贪心算法应用:多重背包启发式问题详解
纪元A梦
贪心算法贪心算法算法java
贪心算法应用:多重背包启发式问题详解多重背包问题是经典的组合优化问题,也是贪心算法的重要应用场景。本文将全面深入地探讨Java中如何利用贪心算法解决多重背包问题。多重背包问题定义**多重背包问题(MultipleKnapsackProblem)**是背包问题的变种,描述如下:给定一个容量为W的背包有n种物品,每种物品i有:重量w_i价值v_i最大可用数量c_i(每种物品可以选择0到c_i个)目标:
- 动态规划--每日一练(多重背包计数类DP)
噜噜啦啦~
动态规划动态规划算法
P1077[NOIP2012普及组]摆花1.题目描述2.解题思路3.代码展示1.题目描述小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。试编程计算,一共有多少种不同的摆花方案。输入格式第一行包
- 代码随想录算法训练营 Day35 动态规划Ⅲ 0-1背包问题
JK0x07
算法动态规划
动态规划背包问题(0-1背包问题)0-1背包:n个物品,每个物品只有一个完全背包:n种物品,每个物品有无限个多重背包:n种物品,每个物品个数不相同暴力解法场景题目类型给出表格,背包最大容量n,说怎么装利益最大化重量价值物品0115物品1320物品2430暴力解法就是穷举(回溯)当装满了背包统计价值再试试其他的,这样穷举所有可能情况,得出最佳结论动态规划思路Dp数组定义Dp说明dp[i][j]在[0
- 代码随想录算法训练营 Day38 动态规划Ⅵ 完全背包应用 多重背包
JK0x07
算法动态规划
动态规划组合与排列DP求组合数是外层遍历物品,内层遍历背包DP求排列数是外层遍历背包,内层遍历物品多重背包多重体现在多个0-1背包,一个物品是有限个的背包问题有N种物品和一个容量为V的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci,价值是Wi。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超过背包容量,且价值总和最大。多重背包和01背包是非常像的,为什么和01背包像呢?每件物品最多有
- 【蓝桥杯】01背包 完全背包 多重背包 模板及优化
遥感小萌新
蓝桥杯蓝桥杯算法职场和发展
01背包N,V=map(int,input().split())w=[0]*(N+1)#体积c=[0]*(N+1)#价格dp=[[0]*(V+1)foriinrange(N+1)]#dp[i][j]前i个物品空间j下最大价值foriinrange(1,N+1):w[i],c[i]=map(int,input().split())foriinrange(1,N+1):forjinrange(1,V+
- 【动态规划】背包问题(01背包,完全背包,多重背包,分组背包)
triticale
算法动态规划算法
01背包有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是viv_ivi,价值是wiw_iwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数viv_ivi,wiw_iwi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一个整数
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- 动态规划 (Dynamic Programming)
nuo534202
学习笔记动态规划算法c++
文章目录背包DP01背包完全背包多重背包混合背包背包DP01背包1.洛谷P2871[USACO07DEC]CharmBraceletS题目链接:洛谷P287101背包模板题,不过多解释。#includeusingnamespacestd;constexprintN=3500,M=13000;intn,m,w[N],d[N],dp[M];intmain(){ios::sync_with_stdio(
- NO.86十六届蓝桥杯备战|动态规划-01背包|采药|小A点菜|Cow Frisbee Team(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯动态规划c++
背包问题是动态规划中最经典的问题,很多题⽬或多或少都有背包问题的影⼦。它的基本形式是:给定⼀组物品,每个物品有体积和价值,在不超过背包容量的情况下,选择物品使得总价值最⼤。背包问题有多种变体,主要包括:01背包问题:每种物品只能选或不选(选0次或1次)。完全背包问题:每种物品可以选择⽆限次。多重背包问题:每种物品有数量限制。分组背包问题:物品被分为若⼲组,每组只能选⼀个物品。混合背包:以上四种背包
- 【算法】动态规划 - 背包问题总结(三)
妄想的男孩
算法算法动态规划
概述上次介绍完了完全背包问题,今天将介绍背包问题中的多重背包和分组背包问题。回顾一下背包问题的所要解决的问题是:有N个物品,有一个容积为V的背包,每个物品有两个属性:体积v[i]和价值w[i]。在背包能装下的前提下,能装的物品的最大价值是多少?多重背包多重背包与前两个背包问题不同的是,每件物品的个数不一,用s[i]表示。多重背包问题链接:多重背包问题I多重背包问题II状态转移方程让我们再回忆一下求
- 算法方法快速回顾
托塔1
Unity知识快速回顾算法
(待修改)目录1.双指针2.滑动窗口理论基础3.二分查找3.二分查找理论基础4.KMP5.回溯算法6.贪心算法7.动态规划7.1.01背包7.2.完全背包7.3.多重背包8.单调栈9.并查集10.图论10.1.广度优先搜索(BFS)10.2.深度优先搜索(DFS)10.3.Dijkstra算法10.4.Floyd-Warshall算法11.哈希算法12.排序算法12.1.冒泡排序12.2.选择排序
- 蓝桥杯C++基础算法-多重背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法。多重背包问题与完全背包问题类似,但每个物品有其数量限制。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]、价值w[i]和数量s[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.动态规划的概念动态规划是一种常用的算法技巧,
- 蓝桥杯C++基础算法-分组背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个分组背包问题的动态规划解法。与之前的多重背包问题不同,这里的每个物品有多个不同的体积和价值组合,而不是单一的体积和价值。以下是代码的详细思路解析:1.问题背景给定n个物品组,每个物品组有s[i]个不同的物品,每个物品有其体积v[i][j]和价值w[i][j],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。2.动态规划的概念动态规划是一种常用的算
- 蓝桥杯C++基础算法-多重背包(优化)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法,并且使用了二进制拆分(或称二进制优化)来优化物品的数量处理。这种方法可以显著减少状态转移的次数,提高算法的效率。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积a、价值b和数量s,以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.二进制
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 算法竞赛备赛——【背包DP】多重背包
Aurora_wmroy
算法竞赛备赛算法动态规划c++数据结构蓝桥杯
多重背包基础模型有一个体积为V的背包,商店有n种物品,每种物品有一个价值v和体积w,每种物品有s个,问能够装下物品的最大价值。这里每一种物品只有s+1种状态即“拿0个、1个、2个…s个”在基础版模型中,多重背包就是将每种物品的s个摊开,变为s种相同的物品,从而退化成01背包处理只需要在01背包的基础上稍加改动,对每一个物品循环更新s次即可时间复杂度为O(nsV)例题小明的背包3蓝桥知识点:DP——
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- 算法题 背包问题-多重背包 二进制优化版本(Python)
武倔
算法题Python每日算法题算法python动态规划leetcode背包问题
题目有N种物品和一个容量是V的背包。第i种物品最多有si件,每件体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔开,分别表示第i种物品的体积、价值和数量。输出格式输出一个整数,表示最大价值。数据范围0=t:forj
- 算法训练day51Leetcode139.单词拆分 多重背包了解 背包问题总结
dc爱傲雪和技术
算法训练算法
139.单词拆分.-力扣(LeetCode)题目分析初始化:初始化一个布尔型向量dp,大小为s.size()+1,所有值初始化为false,除了dp[0]被设置为true。这个布尔数组代表字符串s[0..i]能否通过拼接字典中的单词来形成。dp[0]=true的原因是一个空字符串总是可以被形成。转换wordDict:输入的wordDict被转换成一个无序集合wordset,以便高效查找单词。动态规
- 动态规划——背包问题
kaili_ya
动态规划算法
动态规划——背包问题背包问题0-1背包问题描述解题思路优化完全背包解题思路优化多重背包解题思路1解题思路2恰好装满问题描述解题思路优化背包问题0-1背包一共有n件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?问题描述假如你要去野营,你有一个容量为6磅的背吧,需要觉得该携带下面的哪些东西。其中每样东西都有相应的价值
- 【算法】动态规划专题⑩ —— 混合背包问题 python
查理零世
动态规划专题算法动态规划python
目录前置知识进入正题总结前置知识【算法】动态规划专题⑤——0-1背包问题+滚动数组优化【算法】动态规划专题⑥——完全背包问题python【算法】动态规划专题⑦——多重背包问题+二进制分解优化python混合背包结合了三种不同类型的背包问题:0/1背包、完全背包和多重背包进入正题混合背包问题https://www.acwing.com/problem/content/description/7/题目
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 多维多重背包问题_各种背包五(二维费用背包问题)
zLiM5
多维多重背包问题
问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]
- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s