一个人的旅行(最短路+离散化)

http://acm.hdu.edu.cn/showproblem.php?pid=2066

一个人的旅行

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 23414    Accepted Submission(s): 8153


Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
 

 

Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
 

 

Output
输出草儿能去某个喜欢的城市的最短时间。
 

 

Sample Input
6 2 3 1 3 5 1 4 7 2 8 12 3 8 4 4 9 12 9 10 2 1 2 8 9 10
 

 

Sample Output
9
 

 

Author
Grass
 

 

Source
 

分析:求多个点之间的最短路,因为这个题的数据量1000所以Floyd会超时,考虑用多次Dijkstra,但是由于最后要统计出现的所有点的点数,这里新学的离散化,记下来

离散化的时候注意 是先将所有的点都储存下来再去除重复点,所以储存的数组要开的比他所给的点数多 (10*N ) run time error 了好多次,还要注意考虑去除重复边的情况,

考虑图不连通,考虑离散化的时候的点是按0~N-1编号的还是从1~N编号

下面给出代码:

  1 #include<iostream>

  2 #include<cstdio>

  3 #include<map>

  4 #include<cstring>

  5 #include<algorithm>

  6 #include<vector>

  7 using namespace std;

  8 #define INF 0x1fffffff

  9 #define N 1005

 10 #define M 2000005

 11 struct Edge{

 12     int to;

 13     int v ;

 14     int next;

 15 }edge[M];

 16 int Enct;

 17 int head[N];

 18 void add(int from ,int to , int v )

 19 {

 20     edge[Enct].to = to ;

 21     edge[Enct].v = v ;

 22     edge[Enct].next = head[from];

 23     head[from] = Enct++;

 24 

 25     edge[Enct].to = from ;

 26     edge[Enct].v = v ;

 27     edge[Enct].next = head[to];

 28     head[to] = Enct++;

 29 }

 30 void init ()

 31 {

 32     Enct = 0;

 33     memset(head,-1, sizeof(head));

 34 }

 35 int dist[N];

 36 bool p[N];

 37 void dijk(int s, int n)

 38 {

 39     int i , j , k ;

 40     for( i = 1 ;  i <= n ; i++ )

 41     {

 42         p[i] = false;

 43         dist[i]= INF;

 44     }

 45     p[s] = true;

 46     dist[s] = 0;

 47     for( i = head[s] ; i != -1 ; i = edge[i].next)

 48     {

 49         Edge e = edge[i];

 50         if(e.v<dist[e.to])//考虑重边

 51         dist[e.to] = e.v;

 52     }

 53     for( i = 1 ;i < n ;i++)

 54     {

 55         int Min = INF;

 56         int k = 0 ;

 57         for( j = 1 ; j <= n ; j++)

 58         {

 59             if(!p[j]&&dist[j]<Min)

 60             {

 61                 Min = dist[j];

 62                 k = j;

 63             }

 64         }

 65         p[k] = true;

 66         if(Min == INF) return ;

 67         for( j = head[k] ;j!=-1 ;j=edge[j].next)

 68         {

 69             Edge e = edge[j];

 70             if(!p[e.to]&&dist[e.to]>dist[k]+e.v)

 71             {

 72                 dist[e.to] = dist[k]+e.v;

 73             }

 74         }

 75     }

 76 }

 77 vector <int> sss;

 78 vector <int> ttt;

 79 map <int ,int> mp;

 80 vector<int>::iterator sj;

 81 vector<int>::iterator tj;

 82 int city[10*N], city_cnt; //city有可能有重点,所以数组要开大一点,防止越界

 83 struct Node

 84 {

 85     int s, t, l;

 86 }nd[M];

 87 int main()

 88 {

 89     int t , w , l ;

 90     while(~scanf("%d%d%d",&t,&w,&l))

 91     {

 92         city_cnt = 0;

 93         int tt, ww,ll;

 94         init();

 95         for(int i = 0 ;i < t ; i++)

 96         {

 97             //scanf("%d%d%d",&tt,&ww,&ll);

 98             scanf("%d%d%d",&nd[i].s,&nd[i].t,&nd[i].l);

 99             city[city_cnt++] = nd[i].s;

100             city[city_cnt++] = nd[i].t;

101             //add(tt,ww,ll);

102         }

103         int mmm = INF ;

104         sss.clear();//初始化

105         for(int i = 0 ;i < w ; i++)

106         {

107             int ss;

108             scanf("%d",&ss);

109             city[city_cnt++] = ss;

110             sss.push_back(ss);

111         }

112         ttt.clear();

113         for(int i = 0 ; i < l ; i++)

114         {

115             int zd;

116             scanf("%d",&zd);

117             city[city_cnt++] = zd;

118             ttt.push_back(zd);

119         }

120         sort(city, city+city_cnt);//离散化

121         city_cnt = unique(city, city+city_cnt)-city;//去重

122         mp.clear();

123         for(int i = 0; i< city_cnt; i++) mp[city[i]] = i+1;

124 

125         for(int i = 0; i < t; i++) {

126                 add(mp[nd[i].s], mp[nd[i].t], nd[i].l);

127                 //printf("%d %d %d\n", mp[nd[i].s], mp[nd[i].t], nd[i].l);

128         }

129 

130         for(sj = sss.begin(); sj!=sss.end();sj++)

131         {

132             dijk(mp[(*sj)],city_cnt);

133             //printf("%d:\n", (*sj));

134             //for(int i = 1; i <= city_cnt; i++) printf("%d ", dist[i]); puts("");

135             for(tj = ttt.begin(); tj!=ttt.end(); tj++)

136             {

137 

138                 if(mmm > dist[mp[(*tj)]])

139                     mmm = dist[mp[(*tj)]];

140             }

141         }

142         printf("%d\n",mmm);

143     }

144     return 0;

145 }

 

 

你可能感兴趣的:(最短路)