- 【图论】欧拉回路
u小鬼
ACM23图论深度优先算法
前言你的qq密码是否在圆周率中出现?一个有意思的编码问题:假设密码是固定位数,设有nnn位,每位是数字0-9,那么这样最短的“圆周率”的长度是多少?或者说求一个最短的数字串定包含所有密码。理论一些定义:通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路;通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路;具有欧拉回路的无向图称为欧拉图;具有欧拉通路但不具有欧拉回路的无向图称为半欧拉图。求欧
- 1123. 铲雪车(欧拉回路)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。整个城市所有的道路都是双向车道,道路的两个方向均需要铲雪。因为城市预算的削减,整个城市只有1辆铲雪车。铲雪车只能把它开过的地方(车道)的雪铲干净,无论哪儿有雪,铲雪车都得从停放的地方出发,游历整个城市的街道。现在的问题是:最少要花多少时间去铲掉所有道路上的雪呢?输入格式输入数据的第1行表示铲雪车的停放坐标(x,y),x,y为
- 1184. 欧拉回路(欧拉回路,模板题)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing给定一张图,请你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次。输入格式第一行包含一个整数t,t∈{1,2},如果t=1,表示所给图为无向图,如果t=2,表示所给图为有向图。第二行包含两个整数n,m,表示图的结点数和边数。接下来m行中,第i行两个整数vi,ui,表示第i条边(从11开始编号)。如果t=1则表示vi到ui有一条无向边。如果t=2则表示vi到ui有一条有
- 算法题目题单——图论
kaiserqzyue
算法题目算法图论
简介本文为自己做的一部分图论题目,作为题单列出,持续更新。题单由题目链接和题解两部分组成,题解部分提供简洁题意,代码仓库:Kaiser-Yang/OJProblems。对于同一个一级标题下的题目,题目难度尽可能做到递增。搜索/BFS/DFSLuoguP3547[POI2013]CEN-PriceList题目链接:LuoguP3547[POI2013]CEN-PriceList题解:欧拉回路/欧拉通
- Luogu P6066 [USACO05JAN] Watchcow S 题解 欧拉回路
kaiserqzyue
算法题目c++算法图论
题目链接:LuoguP6066[USACO05JAN]WatchcowS欧拉回路题目描述:给定一张无向图,输出任意一条从一号结点出发的欧拉回路(欧拉回路指每条无向边来回经过且只经过一次),给定的图保证这样的欧拉回路存在。题解:只需要从一号结点开始使用Hierholzer算法进行遍历即可。对于一个存在欧拉回路或者欧拉通路的图Hierholzer算法的思想是一直在图中找环,每找到一个环就将这个环从图中
- 欧拉路 与 欧拉回路
Teresa_李庚希
定义欧拉路:从图中一个点s出发,到图中的一点t,经过每条边且每条边仅经过一次欧拉回路:欧拉路中s==t判定条件无向图所有边联通存在欧拉路:度数为奇数的点的个数为0或2存在欧拉回路:度数为奇数的点的个数为0有向图所有边联通存在欧拉路:所有点的入度==出度或除起点(出度==入度+1)和终点(入度==出度+1)外,其他点的入度==出度存在欧拉回路:除起点(出度==入度+1)和终点(入度==出度+1)外,
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 1380 一笔画问题
tiger_mushroom
算法深度优先图论
如果一个无向图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。#includeusingnamespacestd;#defineN510intg[N][N],d[N],c[N],n,m,reckon,oddity_point,lt;voiddfs(inti){for(intj=1;j>n>>m;intx,y;memset(g,0,sizeof(g));for(in
- 欧拉回路&欧拉路【详解】
tiger_mushroom
欧拉回路欧拉路深度优先算法
1.引入2.概念3.解决方法4.例题5.回顾1.引入经典的七桥问题哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?你怎样证明?后来大数学家欧拉把它转化成一个几何问题——一笔画问题。我们的大数学家欧拉,找到了它的重要条件1.奇点的数目不是0个就是2个奇点:就是度为奇数(有向图是判断出度与入度是否相等),反之为偶点有向图1、连
- 拆点成边来建图 +BEST定理:ABC336G
Qres821
图论BEST定理
https://www.luogu.com.cn/problem/AT_abc336_g考虑一个状态(a,b,c,d)(a,b,c,d)(a,b,c,d)要出现kkk次,如果相当于每次加1个字符,相当于要从(a,b,c)(a,b,c)(a,b,c)走到(b,c,d)(b,c,d)(b,c,d)走kkk次。因此我们就可以根据这样建图。问题转化为求一个图的欧拉路径/欧拉回路条数。由于起终点相同的边没有
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- Java程序员面试需要注意啥?面试常见手撕模板题以及笔试模板总结
Java_苏先生
一.目录排序二分二叉树非递归遍历01背包最长递增子序列最长公共子序列最长公共子串大数加法大数乘法大数阶乘全排列子集N皇后并查集树状数组线段树字典树单调栈单调队列KMPManacher算法拓扑排序最小生成树最短路欧拉回路GCD和LCM素数筛法唯一分解定理乘法快速幂矩阵快速幂二.面试常见手撕模板题以及笔试模板总结0.Java快速输入先给一个干货,可能有些题用Java会超时(很少),下面是Petr刷题时
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- hdu-1878-欧拉回路-图论-并查集-java
Li-金玉良言
hdujavahdu图论并查集
欧拉回路TimeLimit:2000/1000MS(Java/Others)MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):14821AcceptedSubmission(s):5673ProblemDescription欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?I
- 哥尼斯堡的“七桥问题”——欧拉回路
OLDERHARD
算法数据结构
哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(LeonhardEuler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?输入格
- [Tricks] 记各类欧拉回路问题
yingxue_cat
深度优先图论算法
以前从来没见过除了板子以外的题,但最近总是做题见到欧拉回路,然后一样的trick每次都想不到。怎么一点举一反三的能力都没有的?板子有向图的欧拉回路dfs,当前弧优化。Codestackq;voiddfs(intu){for(inti=head[u];i;i=head[u]){head[u]=e[i].nxt;intv=e[i].to;dfs(v);}q.push(u);}无向图的欧拉回路要双向标记
- 【题解】洛谷P3443 [POI2006] LIS-The Postman 题解
conti123
C++题解c++
P3443题意分析Code题意原题链接求一条以111为起点的欧拉回路,使得给定路口序列在路线及求出的欧拉回路序列中出现。分析首先,肯定是要存在欧拉路径的。而有向图中存在欧拉路径须满足以下条件:图去掉孤立点后联通和每个点的入度等于出度。注意到规定的每个路口序列都必须在路线中连续出现,及如果我们存在路线,我们不能改变走这些规定的序列的顺序。那么相当于这些边是被限制死的了,不能改变,所以可以将它们合并为
- DFS求解欧拉回路
嘻嘻哈哈Man
DFS
思路:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路;选择一个正确的起始顶点,用DFS遍历所有的边(每条边只能遍历一次),走不通就回溯;在搜索前进的方向上将遍历过的边按顺序记录下来;这组边的排列就组成了一条欧拉通路或回路。参考欧拉回路原理:https://blog.csdn.net/PacosonSWJTU/article/details/50007847代码:https://blog.csdn.
- 最小字典序欧拉路径
mxYlulu
队内集训心得欧拉路径
欧拉路就是所有边都走一次,也只走一次。欧拉回路就是能够回到起点,欧拉路径没有这么多要求。算法本质是这样的:从起点开始,尽可能地不去走桥(走完之后会把图分成两半),而去走其他边,这样的输出是欧拉路径。但是判桥的过程较为麻烦,我们可以采取这样的手段。如果起点开始有两条边,一条边是应该走的边,另一条是桥。如果我们采用dfsdfsdfs的方式先遍历到底,直到无路可走的时候才加入答案栈中,我们容易知道的是最
- DFS应用——寻找欧拉回路
PacosonSWJTU
数据结构dfs欧拉回路
【0】README0.1)本文总结于数据结构与算法分析,源代码均为原创,旨在理解“DFS应用——寻找欧拉回路”的idea并用源代码加以实现(源代码,我还没有找到一种有效的数据结构和DFS进行结合,往后会po出);【1】欧拉回路1.1)欧拉回路定义:我们必须在图中找出一条路径,使得该路径对图的每条边恰好访问一次。如果我们要解决“附加的问题”,那么我们就必须找到一个圈,该圈恰好经过每条边一次,这种图论
- 【数据结构】图的简介(图的逻辑结构)
Hsianus
数据结构与算法数据结构
一.引例(哥尼斯堡七桥问题)哥尼斯堡七桥问题是指在哥尼斯堡市(今属俄罗斯)的普雷格尔河(PregelRiver)中,是否可以走遍每座桥一次且仅一次,最后回到起点的问题。这个问题被认为是图论的开端,也是数学史上著名的问题之一。欧拉在解决这个问题时,将问题转化为了图论中的欧拉回路问题。他证明了如果一个图中有欧拉回路,那么这个图中每个顶点的度数都是偶数。反之,如果每个顶点的度数都是偶数,那么这个图中就存
- 欧拉回路和欧拉路径
王木木很酷_
#数据结构与算法算法数据结构java开发语言
目录欧拉回路基础欧拉回路的定义欧拉回路的性质判断图中是否存在欧拉回路的java代码实现寻找欧拉回路的三个算法Hierholzer算法详细思路代码实现欧拉路径欧拉路径的定义欧拉路径的性质欧拉回路基础欧拉回路的定义欧拉回路遍历了所有的边,也就意味着遍历了所有的点,但这并不能代表有欧拉回路的地方都有哈密尔顿回路的,如下图的例子。欧拉回路的性质上图四个点的度数都是奇数,所以不存在欧拉回路。欧拉回路的条件:
- 图论15-有向图-环检测+度数+欧拉回路
大大枫
图论图论深度优先算法
文章目录1.有向图设计1.1私有变量标记是否有向1.2添加边的处理,双向变单向1.3删除边的处理,双向变单向1.4有向图的出度和入度2有向图的环检测2.1普通的算法实现换检测2.2拓扑排序中的环检测3欧拉回路1.有向图设计1.1私有变量标记是否有向privatebooleandirected;设计接口来判断是否有向:publicbooleanisDirected(){returndirected;
- 图论11-欧拉回路与欧拉路径+Hierholzer算法实现
大大枫
图论图论算法
文章目录1欧拉回路的概念2欧拉回路的算法实现3Hierholzer算法详解4Hierholzer算法实现4.1修改Graph,增加API4.2Graph.java4.3联通分量类4.4欧拉回路类1欧拉回路的概念2欧拉回路的算法实现privatebooleanhasEulerLoop(){CCcc=newCC(G);if(cc.count()>1)returnfalse;for(intv=0;vre
- 图论(欧拉路径)
炒饭加蛋挞
图论
理论:所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out有向图欧拉回路:所有in=out无向图欧拉路径:两个点度数奇,其余偶无向图欧拉回路:全偶基础练习P7771【模板】欧拉路径P2731[USACO3.3]骑马修栅栏RidingtheFencesP1341无序字母对进阶P3520[POI2011]SMI-Garba
- 最优闭回路问题
七七喝椰奶
数学建模数学建模案例算法
目录一、欧拉回路与道路1、欧拉回路与道路2、欧拉图存在的条件二、中国邮路问题1、中国邮路问题2、中国邮路问题求解3、有奇点的G的中国邮路问题等价问题例1【问题分析】(1)先求图1中任意两点之间的距离矩阵d1如表1(Floyd算法)。(2)确定奇点之间的连线方案(3)规划邮路三、旅行商问题例2旅行商路线问题(算法:tsp问题)【符号设置】【模型假设】【建立模型】【数学模型】【模型求解】一、欧拉回路与
- 学习笔记:欧拉图 & 欧拉路
tsqtsqtsq0309
学习笔记
欧拉图&欧拉路定义图中经过所有边恰好一次的路径叫欧拉路径(也就是一笔画)。如果此路径的起点和终点相同,则称其为一条欧拉回路。欧拉回路:通过图中每条边恰好一次的回路。欧拉通路:通过图中每条边恰好一次的通路。欧拉图:具有欧拉回路的图。半欧拉图:具有欧拉通路但不具有欧拉回路的图。性质欧拉图中所有顶点的度数都是偶数。若GGG是欧拉图,则它为若干个环的并,且每条边被包含在奇数个环内。判别法无向图是欧拉图当且
- 2023.3.6
开星超人
c++c++算法
欧拉回路每个点的度都为偶数临接矩阵谁指向谁4指向2矩阵(4,2)记录为1临接表acwing每日一题二分找最小的不重复子序列用set去重,set翻译为集合,是一个内部自动有序且不含重复元素的容器。sets遍历长度i从1到n,遍历起点j从0到n-i,往集合放入元素s.insert(j,i)若abcdabc,i=3时,set集合1里会存入abc,bcd,cda,dab,(末尾的abc重复被去重)元素个数
- 读图数据库实战笔记01_初识图
躺柒
读图数据库实战图数据库TinkerPopGremlin图
1.图论1.1.起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文1.2.要解决这个问题,该图需要零个或两个具有奇数连接的节点1.3.任何满足这一条件的图都被称为欧拉图1.4.如果路径只访问每条边一次,则该图具有欧拉路径1.5.如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环2.图2.1.顶点和边的集合2.2.示例2.2.1.路线图2.2.2.组织结构图2.3.当要思
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。