安装Ros中 tf 相关功能包
sudo apt-get install ros-melodic-turtle-tf
启动launch文件,这个launch文件相当于一个脚本,可以一次性启动很多节点
roslaunch turtle_tf turtle_tf_demo.launch
启动海龟控制节点
rosrun turtlesim turtle_teleop_key
能够监听当前时刻所有通过ROS广播的tf坐标系,并绘制出树状图表示坐标系之间的连接关系保存到离线文件中,监听5秒后,保存5秒内坐标系之间的关系,会生成一个pdf文件。
rosrun tf view_frames
使用tf_echo工具可以查看两个广播参考系之间的关系。
rosrun tf tf_echo [reference_frame] [target_frame]
例如:
rosrun tf tf_echo turtle1 turtle2
通过rvize可视化工具更加形象的看到这三者之间的关系。
rosrun rviz rviz -d 'rospack find turtle_tf' /rviz/turtle.rviz
cd ~/catkin_ws/src
catkin_create_pkg learning_tf roscpp rospy tf turtlesim
如何实现一个tf广播器
如何实现一个TF监听器
在创建的 learning_tf 目录中的src文件夹下创建一个 cpp文件
cd ~/catkin_ws/src/learning_tf/src
touch turtle_tf_broadcaster.cpp
在 turtle_tf_broadcaster.cpp 文件中写入以下代码。
以下代码的功能:产生tf数据,并计算、发布turtle2的速度指令
#include
#include
#include
std::string turtle_name;
void poseCallback(const turtlesim::PoseConstPtr& msg)
{
// 创建tf的广播器
static tf::TransformBroadcaster br;
// 初始化tf数据
tf::Transform transform;
transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );
tf::Quaternion q;
q.setRPY(0, 0, msg->theta);
transform.setRotation(q);
// 广播world与海龟坐标系之间的tf数据
br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}
int main(int argc, char** argv)
{
// 初始化ROS节点
ros::init(argc, argv, "my_tf_broadcaster");
// 输入参数作为海龟的名字
if (argc != 2)
{
ROS_ERROR("need turtle name as argument");
return -1;
}
turtle_name = argv[1];
// 订阅海龟的位姿话题
ros::NodeHandle node;
ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);
// 循环等待回调函数
ros::spin();
return 0;
};
在创建的 learning_tf 目录中的src文件夹下创建一个 cpp文件
cd ~/catkin_ws/src/learning_tf/src
touch turtle_tf_listener.cpp
在 turtle_tf_listener.cpp 文件中写入以下代码。
以下代码的功能:监听tf数据,并计算、发布turtle2的速度指令
#include
#include
#include
#include
int main(int argc, char** argv)
{
// 初始化ROS节点
ros::init(argc, argv, "my_tf_listener");
// 创建节点句柄
ros::NodeHandle node;
// 请求产生turtle2
ros::service::waitForService("/spawn");
ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
turtlesim::Spawn srv;
add_turtle.call(srv);
// 创建发布turtle2速度控制指令的发布者
ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel", 10);
// 创建tf的监听器
tf::TransformListener listener;
ros::Rate rate(10.0);
while (node.ok())
{
// 获取turtle1与turtle2坐标系之间的tf数据
tf::StampedTransform transform;
try
{
listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
continue;
}
// 根据turtle1与turtle2坐标系之间的位置关系,计算turtle2需要运动的线速度和角速度
// 并发布速度控制指令,使turtle2向turtle1移动
geometry_msgs::Twist vel_msg;
vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
transform.getOrigin().x());
vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
pow(transform.getOrigin().y(), 2));
turtle_vel.publish(vel_msg);
rate.sleep();
}
return 0;
};
在CMakeLists.txt中添加以下代码:
add_executable(turtle_tf_broadcaster src/turtle_tf_broadcaster.cpp)
target_link_libraries(turtle_tf_broadcaster ${catkin_LIBRARIES})
add_executable(turtle_tf_listener src/turtle_tf_listener.cpp)
target_link_libraries(turtle_tf_listener ${catkin_LIBRARIES})
编译项目
cd ~/catkin_ws
catkin_make
设置环境变量,让系统能够找到该工作空间
source devel/setup.bash
启动ROS Master
roscore
启动小海龟仿真器
rosrun turtlesim turtlesim_node
发布/turtle1海龟坐标系关系
rosrun learning_tf turtle_tf_broadcaster __name:=turtle1_tf_broadcaster /turtle1
注:turtle_tf_broadcaster __name:=turtle1_tf_broadcaster 重新命名
发布/turtle2海龟坐标系关系
rosrun learning_tf turtle_tf_broadcaster __name:=turtle2_tf_broadcaster /turtle2
启动自定义的节点
rosrun learning_tf turtle_tf_listener
启动海龟控制节点
rosrun turtlesim turtle_teleop_key
用Python实现的步骤:
cd ~/catkin_ws/src/learning_tf
创建 scripts 文件夹
mkdir scripts
cd scripts
创建 turtle_tf_broadcaster.py Python文件
touch turtle_tf_broadcaster.py
用Python实现的代码:
以下代码的功能:请求/show_person服务,服务数据类型learning_service::Person
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import roslib
roslib.load_manifest('learning_tf')
import rospy
import tf
import turtlesim.msg
def handle_turtle_pose(msg, turtlename):
br = tf.TransformBroadcaster()
br.sendTransform((msg.x, msg.y, 0),
tf.transformations.quaternion_from_euler(0, 0, msg.theta),
rospy.Time.now(),
turtlename,
"world")
if __name__ == '__main__':
rospy.init_node('turtle_tf_broadcaster')
turtlename = rospy.get_param('~turtle')
rospy.Subscriber('/%s/pose' % turtlename,
turtlesim.msg.Pose,
handle_turtle_pose,
turtlename)
rospy.spin()
创建 turtle_tf_listener.py Python文件
touch turtle_tf_listener.py
用Python实现的代码:
以下代码的功能:请求/show_person服务,服务数据类型learning_service::Person
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import roslib
roslib.load_manifest('learning_tf')
import rospy
import math
import tf
import geometry_msgs.msg
import turtlesim.srv
if __name__ == '__main__':
rospy.init_node('turtle_tf_listener')
listener = tf.TransformListener()
rospy.wait_for_service('spawn')
spawner = rospy.ServiceProxy('spawn', turtlesim.srv.Spawn)
spawner(4, 2, 0, 'turtle2')
turtle_vel = rospy.Publisher('turtle2/cmd_vel', geometry_msgs.msg.Twist,queue_size=1)
rate = rospy.Rate(10.0)
while not rospy.is_shutdown():
try:
(trans,rot) = listener.lookupTransform('/turtle2', '/turtle1', rospy.Time(0))
except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException):
continue
angular = 4 * math.atan2(trans[1], trans[0])
linear = 0.5 * math.sqrt(trans[0] ** 2 + trans[1] ** 2)
cmd = geometry_msgs.msg.Twist()
cmd.linear.x = linear
cmd.angular.z = angular
turtle_vel.publish(cmd)
rate.sleep()
注意:需要将Python设置为可执行文件。
启动ROS Master
roscore
启动小海龟仿真器
rosrun turtlesim turtlesim_node
发布/turtle1海龟坐标系关系
rosrun learning_tf turtle_tf_broadcaster.py __name:=turtle1_tf_badcaster _turtle:=turtle1
发布/turtle2海龟坐标系关系
rosrun learning_tf turtle_tf_broadcaster.py __name:=turtle2_tf_badcaster _turtle:=turtle2
启动自定义的监听节点
rosrun learning_tf turtle_tf_listener.py
启动海龟控制节点
rosrun turtlesim turtle_teleop_key