- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 免费GPU平台教程,助力你的AI, pytorch tensorflow 支持cuda
zhangfeng1133
人工智能pytorchtensorflow
Colab:https://drive.google.com/drive/home阿里天池实验室:https://tianchi.aliyun.com/60个小时gputianchi.aliyun.com/notebook-ai/天池实验室_实时在线的数据分析协作工具,享受免费计算资源-阿里云天池移动九天:https://jiutian.10086.cn/edu/#/homekagglekaggl
- 49Kaggle 数据分析项目入门实战--绝地求生游戏最终排名预测
Jachin111
绝地求生介绍相信很多都玩过绝地求生这款游戏,其游戏规则主要是将100名玩家空手被扔到一个岛上,这些玩家必须探索、寻找、消灭其他玩家,直到只剩下一个玩家活着。绝地求生很受欢迎。这款游戏销量目前超过5000万份,是有史以来销量排名前五的游戏,每月有数百万活跃玩家。而我们本次实验的任务就是根据玩家在游戏中的种种表现来预测出其在最终的排名。导入数据并预览首先安装实验需要的statsmodels包。!pip
- 李沐《动手学深度学习》课程笔记:15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测
非文的NLP修炼笔记
#李沐《动手学深度学习》课程笔记深度学习人工智能
15实战:Kaggle房价预测+课程竞赛:加州2020年房价预测1.访问和读取数据集importhashlibimportosimporttarfileimportzipfileimportrequestsDATA_HUB=dict()DATA_URL='http://d2l_data.s3-accelerate.amazonaws.com/'defdownload(name,cache_dir=
- 数据分析-Pandas数据探查初步:离散点图
Alex_StarSky
金融风控数据分析pandaspythonVisualization
数据分析-Pandas数据探查初步:离散点图数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测NO2NO_
- Kaggle Intermediate ML Part Two
卢延吉
NewDeveloper数据(Data)ML&ME&GPTDataML
CategoricalVariablesCategoricalvariables,alsoknownasqualitativevariables,areafundamentalconceptinstatisticsanddataanalysis.Here'sabreakdowntohelpyouunderstandthem:Whatarethey?Categoricalvariablesrepre
- 【工业智能】VSB Power Line Fault Detection-chapter1
凭轩听雨199407
学习python制造数据挖掘
VSBPowerLineFaultDetection-chapter1backgrounddataset数据介绍信号处理方法EDAtrainfeatureengineeringmodeltraintry信息来源:KaggleCompetition:VSBPowerLineFaultDetectionbackground中压高架线路绵延上百公里来为城市提供电力。因为距离很远,所以人工检测那些没有立即
- 【工业智能】VSB Power Line Fault Detection-chapter2
凭轩听雨199407
数据挖掘
工业智能】VSBPowerLineFaultDetection-chapter2关键信息依赖版本信息名词术语tricks信息来源:KaggleCompetition:VSBPowerLineFaultDetection分析冠军代码。源文件URL:https://www.kaggle.com/code/mark4h/vsb-1st-place-solution关键信息LGB标准5折验证9个特征所有特
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- R语言课程论文-飞机失事数据可视化分析
talle2021
数据分析r语言数据分析数据可视化
数据来源:AirplaneCrashesSince1908(kaggle.com)代码参考:ExploringhistoricAirPlanecrashdata|Kaggle数据指标及其含义指标名含义Date事故发生日期(年-月-日)Time当地时间,24小时制,格式为hh:mmLocation事故发生的地点Operator航空公司或飞机的运营商Flight由飞机操作员指定的航班号Route事故前
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 关于商店销售量的数据处理小问题(Python)
不期而遇__
pythonpandas数据分析大数据
通过学校举行的某次学科竞赛,我接触到了kaggle上的一道题:StoreSales-TimeSeriesForecasting。由于题主资质尚浅,本文将对前期数据处理的一些小问题做出解答,不涉及后续更难的问题。此处放原题链接:StoreSales-TimeSeriesForecasting题主也是看了很多的资料,也看到了CSDN上另外一位大佬写的文章,收获颇多,此处也放一下链接:Kaggle实战:
- 学习笔记 2019-04-30
段勇_bf97
HousePrices-bagging_xgboost+lasso+ridgeKaggle入門級賽題:房價預測FFMPEG视音频编解码零基础学习方法35岁程序员的独家面试经历公司名称公司介绍薪水车辆工程专业33岁简历有些传感器方面的东西20k-35k非渣硕是如何获得百度、京东双SP一些面试经验20k-40k吴以均的简历一个大牛的简历北京航空航天大学毕业生的简历厦门大学软件学院毕业生的简历名称介绍H
- 数据分析基础之《pandas(8)—综合案例》
csj50
机器学习数据分析
一、需求1、现在我们有一组从2006年到2016年1000部最流行的电影数据数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data2、问题1想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?3、问题2对于这一组电影数据,如果我们想看Rating、Runtime(Minutes)的分布情况,应该如何呈现数据?4、问题3对于这
- R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况
拓端研究室
R语言R语言逻辑回归logistic泰坦尼克titanic
最近我们被客户要求撰写关于逻辑回归的研究报告,包括一些图形和统计输出。相关视频:R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险逻辑回归Logistic模型原理和R语言分类预测冠心病风险实例,时长06:48逻辑回归是一种拟合回归曲线的方法,y=f(x),当y是一个分类变量时。这个模型的典型用途是在给定一组预测因素x的情况下预测y,预测因素可以是连续的、分类的或混合的。一般来说,分类
- 清明假期第一天20200327The loss of Titanic~10
来而不可失者时也
早晨5:12火车到站,天没亮,阴沉沉的,下了火车才发现还下着小雨,雾蒙蒙的,车站周围的小店也黑着灯,没有开门。幸亏有爸爸开着三轮车来接我,本来约着去看牙,但走到目的地,发现只是个小门诊,没有明确的门牌,不太靠谱,就在附近逛了逛,刚买了些菜和一双鞋,三轮电车警报急需充电,在就近的充电桩充了三块钱的电,走了2公里又在喊“请充电”,可能因为天气冷的原因,电充的慢,担心返程路上没有充电桩,无奈之下只有返回
- XGBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
XGBoost在机器学习中被广泛应用于多种场景,特别是在结构化数据的处理上表现出色,XGBoost适用于多种监督学习任务,包括分类、回归和排名问题。在数据挖掘和数据科学竞赛中,XGBoost因其出色的性能而被频繁使用。例如,在Kaggle平台上的许多获奖方案中,XGBoost都发挥了重要作用。此外,它在处理缺失值和大规模数据集上也有很好的表现。XGBoost是一种基于梯度提升决策树(GBDT)的算
- Kaggle Intro Model Validation and Underfitting and Overfitting
卢延吉
NewDeveloper数据(Data)ML&ME&GPT机器学习
ModelValidationModelvalidationisthecornerstoneofensuringarobustandreliablemachinelearningmodel.It'stherigorousassessmentofhowwellyourmodelperformsonunseendata,mimickingreal-worldscenarios.Doneright,it
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- kaggle实战图像分类-Intel Image Classification(附源码)
橘柚jvyou
分类人工智能pytorch计算机视觉深度学习
目录前言数据集加载定义网络训练网络验证网络前言本篇文章会讲解一个使用pytorch这个深度学习框架完成一个kaggle上的图像分类任务。主要会介绍如何加载数据集,导入网络训练数据,保存损失,精度变化曲线和最终模型,以及测试模型在验证集上的好坏。其数据集介绍可以看一下kaggle的网址,这里就不过多介绍。数据集来源:https://www.kaggle.com/datasets/puneet6060
- 机器学习 | 深入集成学习的精髓及实战技巧挑战
亦世凡华、
#机器学习机器学习集成学习人工智能boostingxgboost
目录xgboost算法简介泰坦尼克号乘客生存预测(实操)lightGBM算法简介《绝地求生》玩家排名预测(实操)xgboost算法简介XGBoost全名叫极端梯度提升树,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,接下来将较详细的介绍XGBoost的算法原理。最优模型构建方法:构建最优模
- 称霸kaggle的XGBoost究竟是啥?
猴小白
一、前言:kaggle神器XGBoost相信入了机器学习这扇门的小伙伴们一定听过XGBoost这个名字,这个看起来朴实无华的boosting算法近年来可算是炙手可热,别的不说,但是大家所熟知的kaggle比赛来看,说XGBoost是“一统天下”都不为过。业界将其冠名“机器学习竞赛的胜利女神”,当然,相信很多小伙伴也看过很多文章称其为“超级女王”。那么问题来了,为啥是女的?(滑稽~)XGBoost全
- Titanic - 1
silent_eyes_77
本周原想探究一下seaborn绘图方面的运用,发现用在实际案例中更有效果,遂直接用Kaggel经典的Titanic案例的描述性分析部分进行研究。以下是案例的其中一部分,模型探究有待补充与更新。复习一下,完成这篇分析报告需要进行的几个步骤:一、导入数据包与数据集二、数据分析1、总体预览2、描述性统计分析:使用统计学与绘图,初步了解数据之间相关性,为构造特征工程和模型建立做准备3、数据清洗4、建模与优
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- Chinese Titanic survivors
俗世尘沙
DocumentaryshineslightonChineseTitanicsurvivors这部纪录片聚焦泰坦尼克号上的中国幸存者The1997blockbusterfilm"Titanic"showedaheart-wrenchingromancebetweentwoyounglovers.Butfewknowthatamongthepassengers,therewereactuallyei
- 北京房价预测——Kaggle数据
GavinHarbus
日暮途远,人间何世将军一去,大树飘零概述之前学习了加州房价预测模型,便摩拳擦掌,从kaggle上找到一份帝都房价数据,练练手。实验流程实验数据从Kaggle中选择了帝都北京住房价格的数据集,该数据集摘录了2011~2017年链家网上的北京房价数据。image下载并预览数据下载并解压数据image预览数据image每一行代表一间房,每个房子有26个相关属性,其中以下几个需要备注:DOM:市场活跃天数
- kaggle:泰坦尼克号获救预测_Titanic_EDA##
卜咦
问题数据来源于Kaggle,通过一组列有泰坦尼克号灾难幸存者或幸存者的训练样本集,我们的模型能否基于不包含幸存者信息的给定测试数据集确定这些测试数据集中的乘客是否幸存。代码与数据分析导入必要的包和titanic数据image数据集基本信息将数据分为不同类别,分别为类别型数据和数字型数据类别数据:Survived,Sex,andEmbarked.Ordinal:Pclass数字型数据:Age,Far
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多