Bzoj-2820 YY的GCD Mobius反演,分块

  题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820

  题意:多次询问,求1<=x<=N, 1<=y<=M且gcd(x,y)为质数有多少对。

  首先,   

  由于这里是多次询问,并且数据很大,显然不能直接求解,需要做如下处理。。

  整数的除法是满足结合律的,然后我们设T=p*d,有:

  注意到后面部分是可以预处理出来的,那么整个ans就可以用分块处理来求了,设

  那么有,考虑当p|x时,根据莫比菲斯mu(x)的性质,px除以其它非p的质数因数都为0,所以g(px)=mu(x)。当p!|x时,除数为p时为mu(x),否则其它的和为-g(x),因为这里还乘了一个p所以要变反。然后O(n)预处理下就可以了。。

  1 //STATUS:C++_AC_3660MS_274708KB

  2 #include <functional>

  3 #include <algorithm>

  4 #include <iostream>

  5 //#include <ext/rope>

  6 #include <fstream>

  7 #include <sstream>

  8 #include <iomanip>

  9 #include <numeric>

 10 #include <cstring>

 11 #include <cassert>

 12 #include <cstdio>

 13 #include <string>

 14 #include <vector>

 15 #include <bitset>

 16 #include <queue>

 17 #include <stack>

 18 #include <cmath>

 19 #include <ctime>

 20 #include <list>

 21 #include <set>

 22 //#include <map>

 23 using namespace std;

 24 //#pragma comment(linker,"/STACK:102400000,102400000")

 25 //using namespace __gnu_cxx;

 26 //define

 27 #define pii pair<int,int>

 28 #define mem(a,b) memset(a,b,sizeof(a))

 29 #define lson l,mid,rt<<1

 30 #define rson mid+1,r,rt<<1|1

 31 #define PI acos(-1.0)

 32 //typedef

 33 typedef long long LL;

 34 typedef unsigned long long ULL;

 35 //const

 36 const int N=10000010;

 37 const int INF=0x3f3f3f3f;

 38 const int MOD=100000,STA=8000010;

 39 const LL LNF=1LL<<60;

 40 const double EPS=1e-8;

 41 const double OO=1e15;

 42 const int dx[4]={-1,0,1,0};

 43 const int dy[4]={0,1,0,-1};

 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

 45 //Daily Use ...

 46 inline int sign(double x){return (x>EPS)-(x<-EPS);}

 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

 50 template<class T> inline T Min(T a,T b){return a<b?a:b;}

 51 template<class T> inline T Max(T a,T b){return a>b?a:b;}

 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

 56 //End

 57  

 58 LL sum[N],g[N];

 59 int isprime[N],mu[N],prime[N];

 60 int cnt;

 61 int T,n,m;

 62  

 63 void Mobius(int n)

 64 {

 65     int i,j;

 66     //Init isprime[N],mu[N],prime[N],全局变量初始为0

 67     cnt=0;mu[1]=1;

 68     for(i=2;i<=n;i++){

 69         if(!isprime[i]){

 70             prime[cnt++]=i;

 71             mu[i]=-1;

 72             g[i]=1;

 73         }

 74         for(j=0;j<cnt && i*prime[j]<=n;j++){

 75             isprime[i*prime[j]]=1;

 76             if(i%prime[j]){

 77                 mu[i*prime[j]]=-mu[i];

 78                 g[i*prime[j]]=mu[i]-g[i];

 79             }

 80             else {

 81                 mu[i*prime[j]]=0;

 82                 g[i*prime[j]]=mu[i];

 83                 break;

 84             }

 85         }

 86     }

 87     for(i=1;i<=n;i++)sum[i]=sum[i-1]+g[i];

 88 }

 89  

 90 int main(){

 91  //   freopen("in.txt","r",stdin);

 92     int i,j,la;

 93     LL ans;

 94     Mobius(10000000);

 95     scanf("%d",&T);

 96     while(T--)

 97     {

 98         scanf("%d%d",&n,&m);

 99  

100         if(n>m)swap(n,m);

101         ans=0;

102         for(i=1;i<=n;i=la+1){

103             la=Min(n/(n/i),m/(m/i));

104             ans+=(sum[la]-sum[i-1])*(n/i)*(m/i);

105         }

106  

107         printf("%lld\n",ans);

108     }

109     return 0;

110 }

 

你可能感兴趣的:(ZOJ)