ln函数的导数

我们都知道, ln ⁡ \ln ln函数的导数为 1 x \dfrac 1x x1,但怎么证明呢?

y = ln ⁡ x y=\ln x y=lnx
y ′ = lim ⁡ Δ x → 0 ln ⁡ ( x + Δ x ) − ln ⁡ x Δ x y'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\ln(x+\Delta x)-\ln x}{\Delta x} y=Δx0limΔxln(x+Δx)lnx

= lim ⁡ Δ x → 0 1 Δ x ln ⁡ ( 1 + Δ x x ) \qquad =\lim\limits_{\Delta x\rightarrow 0} \dfrac{1}{\Delta x}\ln(1+\dfrac{\Delta x}{x}) =Δx0limΔx1ln(1+xΔx)

= lim ⁡ Δ x → 0 ln ⁡ ( 1 + Δ x x ) 1 Δ x \qquad =\lim\limits_{\Delta x\rightarrow 0}\ln(1+\dfrac{\Delta x}{x})^{\frac{1}{\Delta x}} =Δx0limln(1+xΔx)Δx1

= lim ⁡ Δ x → 0 ln ⁡ ( ( 1 + Δ x x ) x Δ x ) 1 x \qquad =\lim\limits_{\Delta x\rightarrow 0}\ln((1+\dfrac{\Delta x}{x})^{\frac{x}{\Delta x}})^{\frac1x} =Δx0limln((1+xΔx)Δxx)x1

∵ e = lim ⁡ x → 0 ( 1 + x ) 1 x \because e=\lim\limits_{x\rightarrow 0} (1+x)^{\frac 1x} e=x0lim(1+x)x1

∴ lim ⁡ Δ x → 0 ( 1 + Δ x x ) x Δ x = e \therefore \lim\limits_{\Delta x\rightarrow 0}(1+\dfrac{\Delta x}{x})^{\frac{x}{\Delta x}}=e Δx0lim(1+xΔx)Δxx=e

所以 y ′ = lim ⁡ Δ x → 0 ln ⁡ e 1 x = 1 x y'=\lim\limits_{\Delta x\rightarrow 0}\ln e^{\frac 1x}=\dfrac 1x y=Δx0limlnex1=x1

补充

( log ⁡ a x ) ′ = ( ln ⁡ x ln ⁡ a ) ′ = 1 ln ⁡ a ⋅ ( ln ⁡ x ) ′ = 1 x ln ⁡ a (\log_a x)'=(\dfrac{\ln x}{\ln a})'=\dfrac{1}{\ln a}\cdot(\ln x)'=\dfrac{1}{x\ln a} (logax)=(lnalnx)=lna1(lnx)=xlna1

所以 log ⁡ a x \log_a x logax的导数为 1 x ln ⁡ a \dfrac{1}{x\ln a} xlna1

你可能感兴趣的:(数学,数学)