不确定性Uncertainty

不确定或不确定性(Uncertainty)一词有多个含义。一般来说,任何没有完全和彻底了解的事物对我们来说都存在不确定性。不确定性这个词有怀疑(比如“他能否按计划完成工作是不确定的”)或者缺乏知识(比如“我不确定溶液是否有毒”)的意思,本文中,作者倾向于把风险和不确定性看成两个不同的词。研究对象的风险可以用风险分析的结果“风险图”来表示,并且“风险图”一般会成为决策制定的依据,当然,决策制定的依据还有很多,比如生产评估、成本利润评估等。为了能够进行好的决策,决策者必须要相信他所使用的决策依据是尽可能正确的。这样,决策者也就会有兴趣了解,他对于风险分析的结果可以有多大信心,即要了解风险分析结果的不确定性有多大。

作者将“不确定性”定义为“对风险评估结果信心的‘量度’”,此处给“量度”加上引号是为了表示不确定性并不一定需要量化。2009年美国国家研究委员会(NRC)对“不确定性”给出的精确定义是“不确定性:信息缺乏或不完整,定量不确定性分析试图分析和描述计算值与真实值之间的差异程度,描述的方法有时候是概率分布。不确定性取决于数据的质量、数量和相关度,以及模型和假设的可靠性和相关度(NRC,2009)。

2.不确定性的类型:

根据需要常常将不确定性分为两大类(Armen Der Kiureghian,2007)。

随机不确定性:随机(Aleatory)这个单词来自拉丁语alea,意思是掷骰子。

认知不确定性:认知(Epistemic)来自希腊语episteme,意思是知识。

2.1 随机不确定性

随机不确定性:此种不确定性主要由自然变异和随机性引起。随机不确定性的例子包括风速、风向、降雨量、产品质量的变化、污染物在食品中的浓度等。

随机不确定性也被称为变异(NRC,2009)、内在不确定性、偶然不确定性和不可降低不确定性。如果在相同的条件下重复一个实验若干次,而每次的结果都不尽相同,比如,抛掷一枚两面均衡的硬币1000次,我们就可以观察到随机不确定性。增加实验的数量并不能减少这些变异的出现,但是却可以让我们更加准确的描绘出结果变异的概率分布。

例子1:考虑一个化工厂毒气泄露的事故场景,有毒气体泄露后形成毒气云其最终影响取决于实时的风向。通过对相关地点风向的长期观察,我们可以拟合出不同方向d的概率分布。在事故场景发生的时候,我们无法确定毒气云一定会吹向居民区,但是我们可以使用分布F(d)寻找事件的概率。

2.2 认知不确定性

认知不确定性:此种不确定性主要是由于缺乏知识引起。常见的例子包括转基因食品的健康风险以及二氧化碳排放导致全球变暖的担忧。从原理上讲,如果我们获得了有关研究对象足够的知识,就可以消除这种不确定性。鉴于随着知识增加,认知不确定性可以因此降低,所以它也可以被称为可降低的不确定性。与随机不确定性相反,认知不确定性依赖于评估者的知识水平,因此它还被称为主观不确定性。

认知不确定性也被称为无知(ignorance)(Salvatore Modica,1997)和表象不确定性。

无知可以分为两种:认识到的无知和没有认识到的无知。认识到的无知是指,我们知道自己不知道,并希望在进行风险分析的时候采取相应措施。而没有认识到的无知则更加危险,因为我们根本不知道自己不知道,说的更严重点,就是我们对于风险评估结果的信心可能就是一种错觉。

例子2:现在,有很多基于纳米技术的新产品不断问世。然而许多人都在担心纳米颗粒会对他们的健康以及地球环境造成伤害。但是至少到现在(2014年),纳米技术的影响还无从所知,因此与使用这项技术相关的认知不确定性还非常高。随着人们关于纳米技术的经验越来越多,认知不确定性也就会随之降低。

从基本的词义上看,不确定性就是简单地缺少确定性,没有必要将其分成不同的类型。然而,绝大部分分析人员都发现使用上面介绍的分类很有帮助(Winkler,1996;Anderson and Hattis,1999;Der Kiureghian and ditlevsen,2009)。现在风险分析界比较一致的看法是,在随机不确定性和认知不确定性之间并没有固定的界限。如果有新的知识出现,我们可以更加深入地解释某一情况或现象,那么与之相应的随机不确定性就降低了。归根结底,可能所有的不确定性都是认知方面的。有时候,信心(confidence)和准确性(Accuracy)这两个词被当作不确定性的反义次,也就是说,在不确定性很高的时候,我们的信心很低。David Cox在1981年给出的不确定性和变量关系的阐述是“变量是物质世界中需要被度量、分析并做出合理解释的现象,而不确定性是知识的一个方面”(David Cox,1981)。

你可能感兴趣的:(不确定性量化,不确定性)