tensorflow2搭建基础神经网络模型

tensorflow2.0搭建基础NN

    • 1. sequenial()
      • 1.1 Sequential()容器
      • 1.2 compile配置神经网络的训练方法
      • 1.3 fit()执行训练过程
      • 1.4 model.summary()打印和统计
      • 1.5 鸢尾花示例
    • 2. 搭建网络模型class
    • 3. MNIST数据集
      • 3.1 Sequential实现手写数字识别训练
      • 3.2 calss实现手写数字识别训练

1. sequenial()

用Tensorflow API: tf. keras

六步法搭建神经网络

  • 第一步:import相关模块,如import tensorflow as tf。
  • 第二步:指定输入网络的训练集和测试集,如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。
  • 第三步:逐层搭建网络结构,model = tf.keras.models.Sequential()。
  • 第四步:在model.compile()中配置训练方法,选择训练时使用的优化器、损失函数和最终评价指标。
  • 第五步:在model.fit()中执行训练过程,告知训练集和测试集的输入值和标签、每个batch的大小(batchsize)和数据集的迭代次数(epoch)。
  • 第六步:使用model.summary()打印网络结构,统计参数数目。

1.1 Sequential()容器

Sequential()可以认为是个容器,这个容器里封装了一个神经网络结构。

model = tf.keras.models.Sequential ([网络结构]) #描述各层网络

在Sequential()中,要描述从输入层到输出层每一层的网络结构。每一层的网络结构可以是:

  • 拉直层:tf.keras.layers.Flatten( )
    • 这一层不含计算,只是形状转换,把输入特征拉直变成一维数组
  • 全连接层:tf.keras.layers.Dense(神经元个数,activation= "激活函数“,kernel_regularizer=哪种正则化)
    • activation (字符串给出)可选: relu、softmax、sigmoid、tanh
    • kernel_regularizer可 选: tf.keras.regularizers.l1()tf.keras.regularizers.12()
  • 卷积层:tf.keras.layers.Conv2D(filters =卷积核个数,kernel size=卷积核尺寸,strides=卷积步长,padding = " valid" or "same")
  • LSTM层;tf.keras.layers.LSTM()

1.2 compile配置神经网络的训练方法

告知训练时选择的优化器、损失函数和评测指标

model.compile(optimizer = 优化器, loss = 损失函数, metrics = ["准确率"] )

优化器可以是以字符串形式给出的优化器名字

Optimizer(优化器)可选:

  • 'sgd' or tf.keras optimizers.SGD (lr=学习率,momentum=动量参数)
  • 'adagrad' or tf.keras.optimizers.Adagrad (lr=学习率)
  • adadelta' or tf.keras.optimizers.Adadelta (lr=学习率)
  • 'adam' or tf.keras.optimizers.Adam (lr=学习率,beta_ 1=0.9, beta_ 2=0.999)

loss是(损失函数)可选:

  • 'mse' or tf.keras losses MeanSquaredError()
  • 'sparse_ categorical_crossentropy or tf.keras.losses.SparseCategoricalCrossentropy(from_logits =False)
    • from_logits参数:有些神经网络的输出是经过了softmax等函数的概率分布,有些则不经概率分布直接输出,from_logits参数是在询问是否是原始输出,即没有经概率分布的输出。
    • 如果神经网络预测结果输出前经过了概率分布,这里是False
    • 如果神经网络预测结果输出前没有经过了概率分布,直接输出,这里是True

Metrics(评测指标)可选:

'accuracy' : y_ 和y都是数值,如y_=[1] y=[1]

'categorical_accuracy' : y_ 和y都是独热码(概率分布),如y_ =[0,1,0] y=[0 256.0.695,0.048]

'sparse_ categorical_accuracy' : y_ 是数值,y是独热码(概率分布),如y_ =[1] y=[0 256,0.695,0.048]

1.3 fit()执行训练过程

model.fit (训练集的输入特征,训练集的标签,
batch_size= ,epochs=,
validation_data=(测试集的输入特征,测试集的标签),
validation_split=从训练集划分多少比例给测试集,
validation_freq =多少次epoch测试一次)
  • batch_ size:每次喂入神经网络的样本数,推荐个数为:2^n
  • epochs:要迭代多少次数据集
  • validation_datavalidation_split二选一
  • validation_freq:每多少次epoch迭代使用测试集验证一次结果

1.4 model.summary()打印和统计

summary()可以打印出网络的结构和参数统计

1.5 鸢尾花示例

import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, 
                          activation='softmax',
                          kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

运行结果

......
 32/120 [=======>......................] - ETA: 0s - loss: 0.3005 - sparse_categorical_accuracy: 0.9375
120/120 [==============================] - 0s 83us/sample - loss: 0.3336 - sparse_categorical_accuracy: 0.9667
Epoch 499/500

 32/120 [=======>......................] - ETA: 0s - loss: 0.3630 - sparse_categorical_accuracy: 0.9688
120/120 [==============================] - 0s 125us/sample - loss: 0.3486 - sparse_categorical_accuracy: 0.9583
Epoch 500/500

 32/120 [=======>......................] - ETA: 0s - loss: 0.3122 - sparse_categorical_accuracy: 0.9688
120/120 [==============================] - 0s 142us/sample - loss: 0.3333 - sparse_categorical_accuracy: 0.9667 - val_loss: 0.4002 - val_sparse_categorical_accuracy: 1.0000
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                multiple                  15        
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________

鸢尾花分类神经网络,是四输入三输出的一层神经网络,参数12个w和3个b,共计15个参数,这一层是Dense全连接。

2. 搭建网络模型class

Sequential搭建神经网络的方法,用Sequential可以搭建出上层输出就是下层输入的顺序网络结构,但是无法写出一些带有跳连的非顺序网络结构。这个时候我们可以选择用class搭建神经网络结构。

六步法搭建神经网络

  1. import
  2. train,test
  3. class MyModel(Model) model=MyMode
  4. model.compile
  5. model.fit
  6. model.summary
class MyModel(Model):
    # 需要继承Model
	def __init__ (self):
		super(MyModel, self).__init__()
		# 定义网络结构块,super继承要与类名一致
	def cal(self, x):
	# 调用网络结构块,实现前向传播
		return y
model = MyModel()
  • __init__():定义所需网络结构块
  • call( ):写出前向传播

代码示例

import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())

    def call(self, x):
        y = self.d1(x)
        return y

model = IrisModel()

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()

运行结果

......
 32/120 [=======>......................] - ETA: 0s - loss: 0.3630 - sparse_categorical_accuracy: 0.9688
120/120 [==============================] - 0s 108us/sample - loss: 0.3486 - sparse_categorical_accuracy: 0.9583
Epoch 500/500

 32/120 [=======>......................] - ETA: 0s - loss: 0.3122 - sparse_categorical_accuracy: 0.9688
120/120 [==============================] - 0s 158us/sample - loss: 0.3333 - sparse_categorical_accuracy: 0.9667 - val_loss: 0.4002 - val_sparse_categorical_accuracy: 1.0000
Model: "iris_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                multiple                  15        
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________

3. MNIST数据集

提供6万张28*28像素点的0~9手写数字图片和标签,用于训练。
提供1万张28*28像素点的0~9手写数字图片和标签,用于测试。

代码示例:

import tensorflow as tf
from matplotlib import pyplot as plt

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 可视化训练集输入特征的第一个元素
plt.imshow(x_train[0], cmap='gray')  # 绘制灰度图
plt.show()

# 打印出训练集输入特征的第一个元素
print("x_train[0]:\n", x_train[0])
# 打印出训练集标签的第一个元素
print("y_train[0]:\n", y_train[0])

# 打印出整个训练集输入特征形状
print("x_train.shape:\n", x_train.shape)
# 打印出整个训练集标签的形状
print("y_train.shape:\n", y_train.shape)
# 打印出整个测试集输入特征的形状
print("x_test.shape:\n", x_test.shape)
# 打印出整个测试集标签的形状
print("y_test.shape:\n", y_test.shape)

运行结果

y_train[0]:
 5
x_train.shape:
 (60000, 28, 28)
y_train.shape:
 (60000,)
x_test.shape:
 (10000, 28, 28)
y_test.shape:
 (10000,)

3.1 Sequential实现手写数字识别训练

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 对输入网络的输入特征进行归一化
# 使原本0到255之间的灰度值,变为0到1之间的数值
# 把输入特征的数值变小更适合神经网络吸收
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),   # 128个神经元为超参数
    tf.keras.layers.Dense(10, activation='softmax')  # 10分类的任务,所以输出层有10个节点
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

运行结果

......
58848/60000 [============================>.] - ETA: 0s - loss: 0.0480 - sparse_categorical_accuracy: 0.9854
59328/60000 [============================>.] - ETA: 0s - loss: 0.0480 - sparse_categorical_accuracy: 0.9854
59776/60000 [============================>.] - ETA: 0s - loss: 0.0479 - sparse_categorical_accuracy: 0.9854
60000/60000 [==============================] - 6s 94us/sample - loss: 0.0478 - sparse_categorical_accuracy: 0.9854 - val_loss: 0.0730 - val_sparse_categorical_accuracy: 0.9776
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
flatten (Flatten)            multiple                  0         
_________________________________________________________________
dense (Dense)                multiple                  100480    
_________________________________________________________________
dense_1 (Dense)              multiple                  1290      
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________

对于结果,后半部部分才是测试集中运行结果。

6s 94us/sample - loss: 0.0478 - sparse_categorical_accuracy: 0.9854 - val_loss: 0.0730 - val_sparse_categorical_accuracy: 0.9776

3.2 calss实现手写数字识别训练

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class MnistModel(Model):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = MnistModel()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

运行结果

......
57824/60000 [===========================>..] - ETA: 0s - loss: 0.0440 - sparse_categorical_accuracy: 0.9866
58528/60000 [============================>.] - ETA: 0s - loss: 0.0440 - sparse_categorical_accuracy: 0.9866
59264/60000 [============================>.] - ETA: 0s - loss: 0.0440 - sparse_categorical_accuracy: 0.9866
60000/60000 [==============================] - 5s 88us/sample - loss: 0.0439 - sparse_categorical_accuracy: 0.9866 - val_loss: 0.0752 - val_sparse_categorical_accuracy: 0.9766
Model: "mnist_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
flatten (Flatten)            multiple                  0         
_________________________________________________________________
dense (Dense)                multiple                  100480    
_________________________________________________________________
dense_1 (Dense)              multiple                  1290      
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________

你可能感兴趣的:(#,TensorFlow2.0,神经网络,深度学习,tensorflow,keras)