def plot_embedding_2d(X, y, d, title=None):
"""Plot an embedding X with the class label y colored by the domain d."""
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
# Plot colors numbers
plt.figure(figsize=(10,10))
ax = plt.subplot(111)
for i in range(X.shape[0]):
# plot colored number
plt.text(X[i, 0], X[i, 1], str(y[i]),
color=plt.cm.bwr(d[i] / 1.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title)
上面的函数大家自己可以修改,就画个图而已,降维后的数据都给你了。因为我是迁移学习,所以添加了每条数据的域类别d。另外,大家根据自己的分类类别设置plt.cm.Set或者bwr。
def plot_embedding_3d(X, title=None):
#坐标缩放到[0,1]区间
x_min, x_max = np.min(X,axis=0), np.max(X,axis=0)
X = (X - x_min) / (x_max - x_min)
#降维后的坐标为(X[i, 0], X[i, 1],X[i,2]),在该位置画出对应的digits
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
for i in range(X.shape[0]):
ax.text(X[i, 0], X[i, 1], X[i,2],str(digits.target[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
if title is not None:
plt.title(title)
from sklearn import datasets
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt
digits = datasets.load_digits(n_class=5)
X = digits.data
y = digits.target
print(X.shape) # 901,64
def plot_embedding_2d(X, y, title=None):
"""Plot an embedding X with the class label y colored by the domain d."""
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
# Plot colors numbers
plt.figure(figsize=(10,10))
ax = plt.subplot(111)
for i in range(X.shape[0]):
# plot colored number
plt.text(X[i, 0], X[i, 1], str(y[i]),
color=plt.cm.Set3(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title)
plt.show()
def plot_embedding_3d(X,y, title=None):
#坐标缩放到[0,1]区间
x_min, x_max = np.min(X,axis=0), np.max(X,axis=0)
X = (X - x_min) / (x_max - x_min)
#降维后的坐标为(X[i, 0], X[i, 1],X[i,2]),在该位置画出对应的digits
fig = plt.figure()
#ax = fig.add_subplot(1, 1, 1, projection='3d')
ax = Axes3D(fig)
for i in range(X.shape[0]):
ax.text(X[i, 0], X[i, 1], X[i,2],str(digits.target[i]),
color=plt.cm.Set3(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
if title is not None:
plt.title(title)
plt.show()
print("Computing t-SNE embedding")
tsne2d = TSNE(n_components=2, init='pca', random_state=0)
tsne3d = TSNE(n_components=3, init='pca', random_state=0)
X_tsne_2d = tsne2d.fit_transform(X)
X_tsne_3d = tsne3d.fit_transform(X)
plot_embedding_2d(X_tsne_2d[:,0:2],y,"t-SNE 2D")
plot_embedding_3d(X_tsne_3d[:,0:3],y,"t-SNE 3D")