- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 蓝桥杯:01串的熵讲解(C++)
DaveVV
蓝桥杯c++蓝桥杯c++c语言算法数据结构
01串的熵本题来自于:2023年十四届省赛大学B组真题(共10道题)主要考察:暴力。代码放在下面,代码中重要的细节全都写了注释,非常清晰明了:#includeusingnamespacestd;intmain(){//请在此输入您的代码intn=23333333;//01串的长度doubletarget=11625907.5798;//信息熵的目标值for(inti=0;i(i)/n;//强转,让
- 机器学习3----决策树
pyniu
机器学习机器学习决策树人工智能
这是前期准备importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#ID3算法#每个特征的信息熵#target:账号是否真实,共2种情况#yes7个p=0.7#no3个p=0.3info_D=-(0.7*np.log2(0.7)+0.3*np.log2(0.3))info_D#日志密度L#日志密度3种结果#s3个0.31yes,2no
- [机器学习]决策树
LBENULL
决策树决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0具有非常好的可解释性、分类速度快的优点,是一种有监督学习最早提及决策树思想的是Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及Breiman等人在1984年提出的CART算法工作原理一般的,一颗决策树包含一个根结点、若干个内部节点和若干个叶节点构造构造
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习:分类决策树(Python)
捕捉一只Diu
python机器学习决策树笔记
一、各种熵的计算entropy_utils.pyimportnumpyasnp#数值计算importmath#标量数据的计算classEntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率最大、基尼指数增益最大"""@staticmethoddef_set_sample_weight(sample_weight,n_
- 新中特复习笔记二——章节整理上(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记三——章节整理下(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记一——论述题(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 熵:信息熵、交叉熵、相对熵
Reore
信息熵信息熵H(X)可以看做,对X中的样本进行编码所需要的编码长度的期望值。交叉熵交叉熵可以理解为,现在有两个分布,真实分布p和非真实分布q,我们的样本来自真实分布p。按照真实分布p来编码样本所需的编码长度的期望为,这就是上面说的信息熵H(p)按照不真实分布q来编码样本所需的编码长度的期望为,这就是所谓的交叉熵H(p,q)相对熵这里引申出KL散度D(p||q)=H(p,q)-H(p)=,也叫做相对
- CDA二级建模分析师考试记录
啾啾二一
文by亲爱的雪莉考试方式是机考,单选+多选+实操题。选择题是用考场的电脑。实操题是考官现场用U盘把资料数据拷贝到你的电脑,2个小时后将数据结果和代码打包再拷贝到考官的U盘(这波操作好low)。选择题主要就是备考手册里的内容,多选题必须全部选对才得分,漏选不得分。题目来说有点翻来覆去,比如计算信息熵,一口气考了四道题,每个1分。其实考试更多是考内容理解,计算同类型考这么多没啥意义。虽说不公布真题,官
- 分类模型的机器学习算法
青椒rose炒饭
决策树为输入选择正确标签的流程图。叶子节点为标签,其他的节点为决策节点。决策树桩只有一个节点的决策树,基于一个特征为输入分类。要建立树桩首先应该决定哪些特征应该使用。最简单的办法是为每一个特征都建立决策树桩然后在训练集上测试选择得分最高的特征。熵和信息增益衡量原始集合的无序程度就需要计算他们的标签的信息熵,如果标签非常不同熵就高,如果标签相同则熵就低。熵每个标签的概率×标签的logo概率的总和.计
- 推荐收藏 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
Pysamlam
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划分属性信息增益的计算是基于信息熵(度量样本集合纯
- c语言求信源的信息熵,第二章-信源与信息熵(三)
UEgood雪姐姐
c语言求信源的信息熵
接上一节第二章-信源与信息熵(二)2.4连续信源的熵与互信息1.实际中,连续信源a)幅度连续b)时间或频率上也连续2.统计特性a)概率密度函数3.用离散变量来逼近连续变量连续信源熵1.定义连续信源的状态概率用概率密度来表示。如果连续随机变量X,取值为实数域R,其概率密度函数为p(x),则如果取值为有限实数域[a,b],则X的概率分布函数为利用离散信源熵的概念来定义连续信源熵设一在[a,b]取间的连
- Visual Studio 2010+C#实现信源和信息熵
deleteeee
算法c#visualstudio信息论信息熵经验分享笔记
1.设计要求以图形界面的方式设计一套程序,该程序可以实现以下功能:从输入框输入单个或多个概率,然后使用者可以通过相关按钮的点击求解相应的对数,自信息以及信息熵程序要能够实现马尔可夫信源转移概率矩阵的输入并且可以计算该马尔可夫信源在每一个状态下每输出一个符号的平均信息量,稳态概率以及最后的信息熵。结果在在界面中直接呈现2.设计过程首先进行图形界面的设计,根据要求界面中应该包括相关标签,输入,输出以及
- 蓝桥杯典型真题分析详解--编程思维--01串的熵
D_nao
c++蓝桥杯冲刺特训蓝桥杯算法职场和发展c语言c++
2023年十四届省赛大学B组真题(共10道题)【问题描述】对于一个长度为n的01串S=x1x2x3...xn.香农信息熵的定义为:其中p(0),p(1)表示在这个01串中0和1出现的占比。比如,对于S=100来说,信息熵H(S)=-1/3log2(1/3)-2/3log2(2/3)-2/3log2(2/3)=1.3083。对于一个长度为23333333的01串,如果其信息熵为11625907.57
- 决策树系列之决策树知识点
coffeetea01
机器学习机器学习决策树
1、什么是决策树;(decisiontree)决策树是一种树型结构,其中:每个内部的结点表示在一个属性的测试;每个分支代表一个测试的输出;每个叶节点代表一种类别;决策树是以实例为基础的归纳学习,采取的是自顶向下的递归方法;其基本思想是,以信息熵为度量构建一颗熵值下降最快的树,到叶子结点处的熵值为0,此时所有的叶节点的熵值都属于同一类。附上:叶节点的信息熵公式为:2、决策树算法的整体特点:最大的特点
- 1.27CNN(输入层,特征提取(卷积,最大池化),输出),损失函数(KL散度,交叉熵推导),熵(物理、信息熵推导),点积矩阵运算(CPU,GPU,NPU)
CQU_JIAKE
机器学习&神经网络数模cnn人工智能算法
CNN损失函数KL散度,交叉熵B部分是训练集的真实实际值,是常数,C部分是训练结果,目的是要让这个损失最小化,与模型参数紧密相关,取出C(带负号),C非负就是更精简的损失函数熵v所谓M个空间,N个小球在其中的排列组合方式为熵对应概率是,M次抽样,一共N种情况,每次抽样都意味着要确定M个空间里的其中一个空间是怎样的,也就是N个小球(情况)里占了多少个小球(分配到了多少个小球、情况),如果分配到的小球
- 李航统计学习方法----决策树章节学习笔记以及python代码
詹sir的BLOG
大数据python决策树算法剪枝
目录1决策树模型2特征选择2.1数据引入2.2信息熵和信息增益3决策树生成3.1ID3算法3.2C4.5算法4决策树的剪枝5CART算法(classificationandregressiontree)5.1回归树算法5.2分类树的生成5.3CART剪枝6PYTHON代码实例决策树算法可以应用于分类问题与回归问题,李航的书中主要讲解的是分类树,构建决策树分为三个过程,分别是特征选择、决策树生成、决
- ID3算法 决策树学习 Python实现
Foliciatarier
算法算法决策树
算法流程输入:约束决策树生长参数(最大深度,节点最小样本数,可选),训练集(特征值离散或连续,标签离散)。输出:决策树。过程:每次选择信息增益最大的属性决策分类,直到当前节点样本均为同一类,或者信息增益过小。信息增益设样本需分为KKK类,当前节点待分类样本中每类样本的个数分别为n1,n2,…,nKn_1,n_2,…,n_Kn1,n2,…,nK,则该节点信息熵为I(n1,n2,…,nK)=−∑i=1
- 张首晟教授留给我们的一封信
TAO0430
自然界三大基本常数:1.E=MC2(爱因斯坦的质能方程式,能量=质量*光速的平方)2.S=-plogp(信息熵公式,)3.海森堡测不准原理万物都是由原子构成(宇宙构成,复杂世界由简单构成)欧几里得几何公理(不言而喻的公理,第一性原理)自然选择适者生存(生物学)人人生而平等(人文)让自由之风吹拂(教育)笔胜于剑(人类文明历史)隐形的手(经济学)大道至简(中华文明)图片发自App
- 信息量、信息熵、信息增益的理解
不断冲的Castor
机器学习的基础知识信息熵决策树
文章目录一、信息量1.一些概念的理解2.用概率表示信息量二、信息熵1.信息熵的计算方法2.信息熵的最大值、最小值三、信息增益(InformationGain)1.定义2.信息增益的计算后记一、信息量1.一些概念的理解首先我们需要将概率、不确定性和信息量这三个概念给串起来。①一个事件发生的不确定性与该事件发生的概率有关系。当一个事件发生的概率越高,事件越有可能发生,事件发生的不确定性就越小,反之,概
- 1.21信息熵理解,一个好看的框架图,SVM
CQU_JIAKE
机器学习&神经网络数学方法数模概率论机器学习人工智能
信息熵理解就是说,每个事件都会提供一些信息以确定情况事件发生的概率越大,意味着频率越大,就有越多的可能性,能缩减的查找范围就越少,所以信息熵就少;事件发生的概率越小,意味着频率越小,就有更少的情况会发生这样的事件,那么能缩减的查找范围就会增大,所以信息熵就大;所谓信息熵实际上就是事件发生后用来衡量能缩减多大的查找空间,能缩减多少的情况数。能缩减(2^信息熵)的情况数就是说整个空间信息大小为13.6
- 1.19信息学,信息熵(wordle)
CQU_JIAKE
数学方法机器学习人工智能深度学习
所谓均方误差实际上就是方差分析:对单词进行编码后,采用聚类方法,可以将单词难度分为三类或者更多,如困难、一般、简单。然后对每一类的单词可视化分析,并描述数据得出结论。聚类算法较多,在论文中可以使用改进的聚类算法就是说,情况越少,在总的所有可能情况里出现的概率也就越少,出现的话,那么也就越能确定如果所蕴含的信息越多,那么就是经过的判断也就越多,即经过所谓判断(是或不是)也就越多,也就是说,就是用所蕴
- 互信息的简单理解
图学习的小张
python
在介绍互信息之前,首先需要了解一下信息熵的概念:所谓信息熵,是指信息论中对一个随机变量不确定性的度量,对于随机变量x,信息熵的定义为:H(x)=−∑xp(x)logp(x)H(x)=-\sum_xp(x)logp(x)H(x)=−x∑p(x)logp(x) 随机变量的熵越大,说明这个变量带给我们的信息越多。 互信息(MI,MutualInformation)表示两个变量之间相互依赖程度的度
- Day4学习记录
好好编码
学习网络
一、行业信息1.信息论知识(1)信息的本质:消除世界的不确定性(2)如何度量信息:利用概率的不确定性不确定度——信息熵*类比名人游戏:信息熵即一个问题的最少提问次数。(公式为对数的原因:log(x*y)=logx+logy,log相加就是概率相乘底换为2万物皆为二进制万物皆为bit)(3)capacity-achieving:容量可达channelcapacity(信道容量):单位时间能传达的信息
- 信息论与编码——信道编码
吕正日
网络信息
什么是最小距离译码准则,举例说明最小距离译码准则是一种常用的纠错码译码方法,用于在接收到含有错误的编码信息时,通过计算与已知编码序列之间的距离来判断最有可能的原始信息。该准则的基本思想是选择与接收到的编码序列距离最近的已知编码序列作为译码结果。距离通常使用汉明距离来度量,汉明距离是指两个等长字符串之间相应位置上不同字符的个数。下面通过一个简单的例子来说明最小距离译码准则的应用:假设发送方使用一个二
- ID3决策树的建模流程
今天也要加油丫
机器学习机器学习
下面以一个简单的数据集,包括了天气、温度、湿度三个特征,以及是否出门的目标变量,来演示ID3决策树的建模流程。天气温度湿度是否出门晴天高低是多云中中是雨天低高否晴天高高否多云低低是CART树是按照某切分点来展开,而ID3则是按照列来展开,即根据某列的不同取值来对数据集进行划分。以天气的不同取值为划分规则首先计算父节点的信息熵为了表示方便,[2,3]表示[否的数量,是的数量]entropy([2,3
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo