- 蓝桥杯网络安全春秋赛 Crypto RSA
叁Three
蓝桥杯密码学
蓝桥杯网络安全春秋赛CryptoRSA题目某公司为了保护其重要数据,使用了RSA加密算法。该公司以同一个N为模数,为Alice和Bob分别生成了不同的公钥和与之相应的私钥。Alice和Bob都使用自己的公钥对同一条明文m进行加密,分别得到密文c1和c2。假设你是一名密码安全研究者,你已获取了N值、两个密文和公钥,能否使用RSA的相关知识还原出明文m呢?#!python3.9fromCrypto.U
- AIGC从入门到实战:可能消失的职业和新出现的机会
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:可能消失的职业和新出现的机会作者:禅与计算机程序设计艺术1.背景介绍人工智能生成内容(AIGC)正在迅速改变我们的世界。从文本、代码到图像和音乐,AIGC正在各个领域展示其强大的能力,并开始挑战传统的创意产业。本篇文章将深入探讨AIGC的概念、技术原理、应用场景以及其对未来职业的影响,并为读者提供入门AIGC的实用指南。1.1AIGC的兴起AIGC的兴起得益于近年来人工智能技
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 基于内容分块(CDC)的重删算法详解:原理、实现与优化
这个懒人
算法
引言在数据爆炸式增长的时代,存储资源优化成为技术领域的重要课题。重复数据删除(Deduplication)技术通过消除冗余数据副本,可将存储需求降低90%以上。其中基于内容分块(Content-DefinedChunking,CDC)算法凭借其对数据局部修改的强适应性,成为企业级备份系统、云存储服务的核心技术。一、CDC算法核心原理1.1动态分块vs静态分块传统固定分块算法将数据按固定大小(如4K
- 内容创作者必备!Deepseek赋能,让创作更高效
小焱创作
AI改变未来人工智能人工智能写作ai写作深度学习神经网络aichatgpt
内容创作者必备!DeepSeek赋能,让创作更高效在当今信息爆炸的时代,内容创作已成为自媒体博主们展现才华、吸引粉丝的重要途径。然而,面对日益增长的竞争压力和不断变化的用户需求,如何高效、高质量地产出内容成为了摆在我们面前的一大挑战。幸运的是,随着人工智能技术的飞速发展,一款名为DeepSeek的智能工具应运而生,为内容创作者提供了强大的赋能。本文将深入探讨DeepSeek的基本概念、深层次解读、
- 算法-找到字符串中所有字母异位词
程序员南飞
算法数据结构开发语言java
力扣题目:438.找到字符串中所有字母异位词-力扣(LeetCode)题目描述:给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="aba
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- MVC/MVP/MVVM框架学习总结(二)
每次的天空
mvc学习java
上次已经了解到MVC的知识,现在是扩展实现MVP/MVVM的框架改进本身项目MVVM框架即Model-View-ViewModel框架,是一种软件架构设计模式,以下是具体介绍:核心组件Model(模型):代表应用程序的数据结构和业务逻辑,负责数据的存储、检索、验证和处理,定义业务规则和算法,是应用程序的数据核心。比如在一个电商应用中,商品数据、用户订单数据等的存储和相关逻辑处理都属于Model层。
- 开源模型应用落地-Qwen2-VL-7B-Instruct-vLLM-OpenAI API Client调用
开源技术探险家
开源大语言模型-新手试炼深度学习AI编程AIGC
一、前言学习Qwen2-VL,为我们打开了一扇通往先进人工智能技术的大门。让我们能够深入了解当今最前沿的视觉语言模型的工作原理和强大能力。这不仅拓宽了我们的知识视野,更让我们站在科技发展的潮头,紧跟时代的步伐。Qwen2-VL具有卓越的图像和视频理解能力,以及多语言支持等特性。学习它可以提升我们处理复杂视觉信息的能力,无论是在学术研究中分析图像数据、解读视频内容,还是在实际工作中进行文档处理、解决
- 【时间复杂度常见的计算】
xihongshi547
算法leetcode数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档时间复杂度的简单介绍前言一、时间复杂度是什么?二、时间复杂度的计算1.基本步骤2.常见的时间复杂度总结前言对于判断一段代码的好坏,取决于该代码运行的时间与占用的空间,也就是时间复杂度与空间复杂度,本章就先讲一下时间复杂度,主要包含常见的时间复杂度的计算。一、时间复杂度是什么?时间复杂度是衡量算法运行效率的一个重要指标,它表示随着输入规
- ChatGPT、DeepSeek、Grok 三者对比:AI 语言模型的博弈与未来
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能技术的飞速发展,AI语言模型已经成为人机交互、内容创作、代码生成、智能问答等领域的重要工具。其中,ChatGPT(OpenAI)、DeepSeek(中国团队研发)和Grok(xAI,ElonMusk旗下公司)是当前三大具有代表性的AI语言模型。它们在技术架构、应用场景、用户体验、生态开放性等多个维度各具特色,并针对不同的用户需
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 【go从入门到精通】探秘struct结构体转json为什么需要首字母大写?
前网易架构师-高司机
golang从入门到精通golangjsongo结构体首字母大写golang从入门到精通go从入门到精通
目录作者简介:问题抛出分析结论作者简介:高科,先后在IBMPlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业
- 【动手学深度学习】#1PyTorch基础操作
-一杯为品-
机器学习深度学习人工智能
主要参考学习资料:《动手学深度学习》阿斯顿·张等著【动手学深度学习PyTorch版】哔哩哔哩@跟李牧学AI目录1.1数据操作1.1.1入门1.1.2运算符1.1.3广播机制1.1.4索引和切片1.1.5节省内存1.1.6转换为其他Python对象1.2数据预处理1.2.1读取数据集1.2.2处理缺失值1.2.3转换为张量格式1.3线性代数1.3.1标量1.3.2向量1.3.3矩阵1.3.4张量1.
- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- DeepSeek 与云原生后端:AI 赋能现代应用架构
一ge科研小菜菜
后端人工智能后端
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在当今快速发展的互联网时代,云原生(CloudNative)架构已成为后端开发的主流趋势。云原生后端的核心目标是利用云计算的弹性、可扩展性和高可用性,为现代应用提供稳定可靠的后端支持。而人工智能(AI)技术的发展,使得智能化成为云原生后端的新趋势。DeepSeek作为新一代AI技术,在云原生后端的自动化运维、智能资源调度、安全增强和高效数
- 算法学习之路——贪心算法
蒋楠鑫
算法算法贪心算法
文章目录一、前言二、什么是算法三、什么是贪心算法1.含义2.基本思路3.适用场景四、代码实现五、经典例题分析六、总结一、前言先来看一道简单的数学问题:小明有30元钱,每瓶酒要5元钱,每3个空瓶子可以换1瓶酒,请问小明最多可以喝到多少瓶酒?这道题目显然是一道求最优解的问题,由于数据量小我们可以用最简单最直接的枚举法来解决,但是如果将题目泛化一下呢:小明现在购买了m瓶酒,每n个空瓶子可以换1瓶酒,请问
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 五大基础算法——模拟算法
六七_Shmily
数据结构与算法分析算法
模拟算法是一种通过直接模拟问题描述的过程或规则来解决问题的算法思想。它通常用于解决那些问题描述清晰、步骤明确、可以直接按照规则逐步实现的问题。以下是模拟算法的核心概念、适用场景、实现方法及经典例题:一、核心概念问题描述清晰问题的规则和步骤明确,可以直接按照描述实现。逐步模拟按照问题的规则,一步一步模拟过程,直到得到最终结果。无复杂优化模拟算法通常不涉及复杂的优化技巧,重点是准确实现问题描述。二、适
- C++闪电侠:快速幂算法终极指南
三流搬砖艺术家
算法算法深度优先c++
目录快速幂核心思想快速幂模板代码快速幂取模模板(大数必备)实战演练(LeetCode真题)快速幂核心思想二进制分解+分治思想:a^13=a^(8+4+1)=a^8*a^4*a^1通过不断平方分解指数:a→a²→a⁴→a⁸→...动态演示:指数b=13的二进制:1101计算路径:a^1→(a^1)²→a^2→(a^2)²→a^4→(a^4)²→a^8最终结果=a^8*a^4*a^1快速幂模板代码ll
- 国央企AI落地:以智能客服系统为突破口的详细实施方案探讨
数商云网络
B2B系统数字化电商平台人工智能大数据架构java微服务spring
一、引言随着人工智能(AI)技术的飞速发展和广泛应用,国央企作为国民经济的重要支柱,正积极探索AI技术在企业管理、业务运营等方面的应用。智能客服系统作为AI技术的一个重要应用领域,具有提升服务效率、增强用户体验、降低运营成本等显著优势,成为国央企AI落地的重要突破口。本文将详细探讨国央企如何以智能客服系统为突破口,实施AI技术的落地应用,并结合数商云在智能客服系统领域的实践经验,为国央企提供一套切
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 云原生:K8s(Kubernetes)高频典型面试题汇总
老舅的火箭爱扫地
云原生kubernetes容器
1.简述etcd及其特点?答:etcd是CoreOS团队发起的开源项目,是一个管理配置信息和服务发现(servicediscovery)的项目,它的目标是构建一个高可用的分布式键值(key-value)数据库,基于Go语言实现。特点:l简单:支持REST风格的HTTP+JSONAPIl安全:支持HTTPS方式的访问l快速:支持并发1k/s的写操作l可靠:支持分布式结构,基于Raft的一致性算法,R
- 【第14届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.日期统计B.01串的熵C.冶炼金属D.飞机降落E.接龙数列F.岛屿个数G.子串简写H.整数删除I.景区导游J.砍树正文总共10道题。A.日期统计【题目】日期统计【分析】【答案】235【AC_Code】#include#defineIOSios::sync_with_stdio(0);cin.tie(0);cout.tie(0);usingn
- CSDN社区,到底该不该用DeepSeek AI生成文章?
Small踢倒coffee_氕氘氚
python经验分享
##引言在当今数字化时代,人工智能(AI)技术正以惊人的速度发展,逐渐渗透到各个行业和领域。作为AI技术的一个重要分支,自然语言处理(NLP)在内容创作、文本生成等方面展现出了巨大的潜力。DeepSeekAI作为一款先进的AI写作工具,能够自动生成高质量的文章,极大地提高了内容创作的效率。然而,随着AI生成内容的普及,CSDN社区中的开发者、技术爱好者和内容创作者们开始思考一个问题:我们到底该不该
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 企业级通配符 SSL 证书:企业网络安全的坚实护盾
ssl证书
一、什么是企业级通配符SSL证书企业级通配符SSL证书,是一种数字证书,它就像是企业在网络世界的“身份证”。与普通证书不同,其最大亮点在于一个证书能保护一个主域名及其下所有的子域名。这极大地简化了证书管理流程,企业无需为每个子域名单独申请和配置证书,一站式搞定网络加密需求。二、强大的加密保障在网络数据传输如水流般穿梭的时代,信息安全至关重要。企业级通配符SSL证书采用先进加密算法,将数据加密打包后
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><