- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 视觉SLAM十四讲学习笔记——第五讲 相机与图像
晒月光12138
视觉SLAM十四讲学习笔记自动驾驶计算机视觉人工智能
这一讲主要内容就是了解摄像机的成像模型以及OpenCV的使用。1.四种坐标系坐标系基本描述世界坐标系因为摄像机和物体可以随便摆放在空间中的任何位置,所以我们必须用一个固定的坐标系来描述空间中任何物体的位置和摄像机的位置和朝向,这个基准坐标系我们称之为世界坐标系。在计算机视觉中,我们通常把世界坐标系定义为摄像机坐标系或者所观测的物体的中心。摄像机坐标系摄像机坐标系的原点是摄像机的光心,X、Y轴分别平
- 视觉slam十四讲学习笔记(四)相机与图像
苦瓜汤补钙
视觉SLAM十四讲笔记相机机器学习
理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。目录前言一、相机模型1针孔相机模型2畸变单目相机的成像过程3双目相机模型4RGB-D相机模型二、图像计算机中图像的表示三、图像的存取与访问1安装OpenCV2存取与访问总结前言前面介绍了“机器人如何表示自身位姿”的问题,部分地解释了SLAM经典模型中
- ORB-SLAM3运行自制数据集进行定位教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━IMUORB-SLAM3
目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。文章目录一、系统配置二、制作数据集1、脚本编写2、配置文件编写3、录制视频素材4、修改CMakeLists.txt5、编译运行一、系统配置系统版本ubuntu20.04Ope
- 视觉SLAM十四讲学习笔记(二)三维空间刚体
苦瓜汤补钙
视觉SLAM十四讲笔记计算机视觉算法
哔哩哔哩课程连接:视觉SLAM十四讲ch3_哔哩哔哩_bilibili目录一、旋转矩阵1点、向量、坐标系2坐标系间的欧氏变换3变换矩阵与齐次坐标二、实践:Eigen(1)运行报错记录与解决三、旋转向量和欧拉角1旋转向量2欧拉角四、四元数1四元数的定义2四元数的运算3用四元数表示旋转4四元数到旋转矩阵的转换五、实践:Eigen(2)useGeometryvisualizeGeometry总结前言问题
- 视觉slam十四讲学习笔记(三)李群与李代数
苦瓜汤补钙
视觉SLAM十四讲笔记人工智能学习
1.理解李群与李代数的概念,掌握SO(3),SE(3)与对应李代数的表示方式。2.理解BCH近似的意义。3.学会在李代数上的扰动模型。4.使用Sophus对李代数进行运算。目录前言一、李群李代数基础1群2李代数的引出3李代数的定义4李代数so(3)5李代数se(3)二、指数与对数映射1SO(3)上的指数映射2SE(3)上的指数映射三、李代数求导与扰动模型1BCH公式与近似形式2SO(3)李代数上的
- 视觉SLAM十四讲学习笔记(一)初识SLAM
苦瓜汤补钙
计算机视觉人工智能
目录前言一、传感器1传感器分类2相机二、经典视觉SLAM框架1视觉里程计2后端优化3回环检测4建图5SLAM系统三、SLAM问题的数学表述四、Ubuntu20.04配置SLAM十四讲前言SLAM:SimultaneousLocalizationandMapping同时定位与地图构建(建图)。搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环地的模型。同时储计自己的运动。视觉SLA
- 【SLAM14讲编译依赖软件源码版本方面等问题汇总】
终问鼎
自动驾驶-SLAMc++自动驾驶buglinuxubuntu
"逆转鹈鹕”0.视觉SLAM十四讲1.ch3-------Eigen32.ch4-------Sophus2.ch5-------JoinMap3.ch63.1---ceres3.2---g2o4.ch7--视觉里程计5.--ch8associate.py6.--ch9project以下是本人在学习SLAM中遇到的全部问题汇总(主要是依赖和软件方面的)。0.视觉SLAM十四讲1.ch3------
- 《视觉SLAM十四讲》第九讲前段实践中g2o实践代码报错解决方法
大二哈
在《视觉SLAM十四讲》中针对于g2o初始化部分代码是无法执行的,在高博的Git上的代码也是无法编译的,会报错:error:nomatchingfunctionforcallto‘g2o::BlockSolver>::BlockSolver(g2o::BlockSolver>::LinearSolverType*&)’定位报错的代码段如下:typedefg2o::BlockSolver>Block
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 【视觉SLAM十四讲学习笔记】第六讲——状态估计问题
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 【视觉SLAM十四讲学习笔记】第六讲——非线性最小二乘
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- INDEMIND双目惯性模组运行实时ORB-SLAM3教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━ORB-SLAM3INDEMINDROSubuntu20.04imu
现在实验室视觉SLAM已经不够满足,所以需要多模态融合,正巧购入高翔博士推荐的INDEMIND双目惯性模组,根据官方例程在中使用ROS接入ORB-SLAM3,这回有SDK及ORB-SLAM3安装过程中的各种常见性问题解决方法及安装细节,与官网教程略有不同,列举所有默认安装的依赖,做以记录。文章目录实验环境一、SDK安装1、SDK下载及准备安装2、安装依赖3、然后使用git下载SDK4、准备安装SD
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 【ORB-SLAM2源码梳理1】以单目mono_tum.cc为例,构建SLAM系统(含mono_tum.cc、System.cc关键代码解析)
Jay_z在造梦
ORB-SLAM2c++slamorb
文章目录前言一、进入mono_tum.cc1.导入TUM数据集图片:LoadImages()2.构建SLAM系统:System3.系统构建结束,开启跟踪线程1)一帧帧地读取对应路径下的rgb图像:2)将图像帧传入Tracking线程,开始一系列操作(关键):二、代码导图前言因为对于视觉SLAM而言,单目涉及初始化等步骤,相对于双目和RGBD较为复杂,故从单目学起。学习记录。一、进入mono_tum
- 手把手带你死磕ORBSLAM3源代码(六十四) LocalMapping.cc LocalMapping Run
安城安
数据库服务器网络运维vimlinuxc语言
目录一.前言二.代码2.1完整代码一.前言以下是对该方法功能的详细解释:mbFinished被设置为false,表示局部映射过程尚未完成。方法进入一个无限循环,这是因为在视觉SLAM中,局部映射是一个持续进行的过程,需要不断地处理新的关键帧和地图点。通过调用SetAcceptKeyFrames(false)方法,局部映射告诉追踪器(Tracker)它目前正在忙,不应该接受新的关键帧。这是为了确保局
- 视觉SLAM十四讲|【四】误差Jacobian推导
影子鱼Alexios
algorithm机器学习机器人
视觉SLAM十四讲|【四】误差Jacobian推导预积分误差递推公式ω=12((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))\omega=\frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g))ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))其中,wbkw_b^kw
- 视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式
影子鱼Alexios
algorithm控制理论机器学习机器人人工智能
视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式基本推导方法无时间戳延迟时,残差计算流程:世界坐标系中的第lll个地图点变换到相机坐标系下为flw=[x,y,z]Tf_l^w=[x,y,z]^Tflw=[x,y,z]T变换到相机坐标系下为flci=RcbRwbiT(flw−pwbi)+pcbf_l^{c_i}=R_{cb}R_{wb_i}^T(f_l^w-p_{wb_i})+p_{c
- 《SLAM十四讲》Ch7编译报错
Prejudices
SLAMSLAM
《SLAM十四讲》Ch7编译报错原因:视觉SLAM书上的程序使用的g2o版本比较旧了,使用的是c++11版本的g2o。而自己在编译g2o的时候编译的是最新版本的g2o,里面大量使用了c++14标准库的一些新特性,比如std::index_sequence等等。而书上的CMakeLists.txt默认使用的是c++11进行cmake编译,所以报错解决:CMakeLists.txt中更改如下:set(
- openvslam------slam解读系列
xiechaoyi123
SLAM系列slamoptimization
是什么:openvslam是日本先进工业科技研究(NationalInstituteofAdvancedIndustrialScienceandTechnology)所于2019年5月20日开源的视觉SLAM框架;github源码地址:https://github.com/xdspacelab/openvslam干什么的:先上图:通过不同类型的相机(单目,双目,RGBD,鱼眼或者全景相机)拍摄的序
- ORB_SLAM3:IMU初始化过程梳理以及自己的理解
追风筝的人~TH
ORB_SLAM3计算机视觉人工智能c++
LocalMapping线程中IMU初始化:1、为什么要进行初始化?因为无法保证世界坐标系(单目初始化参考关键帧)的Z轴正好与重力方向平行,二者有角度,计算该角度的过程就是IMU初始化的过程。2、IMU初始化过程中不断优化尺度,在单目相机的视觉SLAM中,尺度指的是场景中真实物体的物理尺寸与它在相机图像中所对应的像素距离之间的比例关系。在视觉SLAM中,尺度是一个非常重要的概念,因为它决定了相机观
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- SLAM中的二进制词袋生成过程和工作原理
深蓝学院
机器学习人工智能
长期视觉SLAM(SimultaneousLocalizationandMapping)最重要的要求之一是鲁棒的位置识别。经过一段探索期后,当长时间未观测到的区域重新观测时,标准匹配算法失效。当它们被健壮地检测到时,回环检测提供正确的数据关联以获得一致的地图。用于环路检测的相同方法可用于机器人在轨迹丢失后的重新定位,例如由于突然运动,严重闭塞或运动模糊。词袋的基本技术包括从机器人在线收集的图像中建
- 【视觉SLAM十四讲学习笔记】第五讲——相机模型
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 2023-01-04日志
独孤西
今天学习了惯导的一节课与视觉SLAM视觉里程计的部分知识。惯性导航方面,主要学习了加速度计和陀螺的基本实现原理,了解了不同类型的惯性传感器,区分ISA、IMU、INS,知道了平台式与捷联式的区别,对惯导的精度等级分类也有了了解,并对惯导发展历史进行了学习。视觉里程计方面,主要学习了ORB特征点法的工作原理,了解了对极几何的原理,对视觉里程计的2D-2D估计过程有了更全面的了解。视觉SLAM的数学原
- 视觉SLAM十四讲|【五】相机与IMU时间戳同步
影子鱼Alexios
机器人机器学习
视觉SLAM十四讲|【五】相机与IMU时间戳同步相机成像方程Z[uv1]=[fx0cx0fycy001][XYZ]=KPZ\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&c_x\\0&f_y&c_y\\0&0&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\end{bmatrix}=KPZuv1=fx000
- 视觉SALM与激光SLAM的区别
Jiqiang_z
LOAM系列阅读笔记SLAM学习笔记机器学习人工智能深度学习
前言:这里比较一下视觉SLAM和激光SLAM的区别,仅比较其在算法层面上的一些不同,这里拿视觉SLAM算法:ORB-SLAM系列和激光SLAM算法:LOAM系列对比。一:特征提取1.ORB-SLAM(视觉SLAM)ORB-SLAM算法采用ORB特征点,ORB特征点一般提取在角点上面,每一个ORB特征点具有以下信息:位置信息:该ORB特征点所在的图像像素坐标。描述子信息:用来描述该特征点的周围信息。
- 视觉SLAM和激光SLAM适合的应用领域以及哪个更有前景
稻壳特筑
SLAMSLAM
目录视觉SLAM的应用领域激光SLAM的应用领域视觉SLAM优势和局限性激光SLAM优势和局限性发展趋势和前景视觉SLAM的应用领域增强现实(AR)和虚拟现实(VR):视觉SLAM能够提供丰富的视觉信息,有助于在现实世界中叠加虚拟图像,适用于AR眼镜和VR头显。消费电子产品:在智能手机、平板电脑等设备上,视觉SLAM可以用于室内导航、三维建模和交互游戏。机器人:小型或成本敏感的机器人,如家用清洁机
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s