ROS学习(30)自定义移动机器人模型gazebo仿真(激光雷达+kinect)

文章目录

  • 前言
  • 一、创建编译功能包
  • 二、xacro文件
    • 1、robot_base.xacro文件
    • 2、robot_camera.xacro文件
    • 3、robot_lidar.xacro文件
    • 4、camera_sensors.xacro文件
    • 5、lidar_sensors.xacro文件
    • 6、kinect_sensors.xacro文件
    • 7、inertia.xacro文件
    • 8、move.xacro文件
    • 9、robot.xacro文件
  • 三、启动模型
    • 1、robot.launch文件
    • 2、运行launch文件
  • 四、移动控制
  • 五、效果


前言

之前自定义实现过一款机器人模型,后续文章中提到另一款模型(博客19),主要用于后续学习使用,所以在这里记录下。

一、创建编译功能包

切换到catkin_ws/src目录下,如下:

catkin_create_pkg robot_sim_gazebo urdf xacro

切换到catkin_ws目录下,编译该功能包,如下:

catkin_make robot_sim_gazebo 

在该功能包下创建include、src、launch、urdf文件夹,在urdf文件下创建urdf文件夹和xacro文件夹。

二、xacro文件

1、robot_base.xacro文件

<?xml version="1.0"?>
<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <xacro:property name="PI" value="3.1415926"/>

    <material name="black">
        <color rgba="0.0 0.0 0.0 1.0" />
    </material>

    <xacro:property name="base_footprint_radius" value="0.001" /> 
    <xacro:property name="base_link_radius" value="0.1" /> 
    <xacro:property name="base_link_length" value="0.08" /> 
    <xacro:property name="earth_space" value="0.015" /> 
    <xacro:property name="base_link_m" value="0.5" /> 

    <material name="gray">
        <color rgba="0.75 0.75 0.75 1"/>
    </material>

    <link name="base_footprint">
      <visual>
        <geometry>
          <sphere radius="${base_footprint_radius}" />
        </geometry>
      </visual>
    </link>

    <link name="base_link">
      <visual>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <material name="yellow">
          <color rgba="1 0.4 0 1" />
        </material>
      </visual>
      <collision>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
      </collision>
      <xacro:cylinder_inertial_matrix m="${base_link_m}" r="${base_link_radius}" h="${base_link_length}" />

    </link>


    <joint name="base_link2base_footprint" type="fixed">
      <parent link="base_footprint" />
      <child link="base_link" />
      <origin xyz="0 0 ${earth_space + base_link_length / 2 }" />
    </joint>
    <gazebo reference="base_link">
        <material>Gazebo/Yellow</material>
    </gazebo>

    <xacro:property name="wheel_radius" value="0.0325" />
    <xacro:property name="wheel_length" value="0.015" />
    <xacro:property name="wheel_m" value="0.05" /> 

    <xacro:macro name="add_wheels" params="name flag">
      <link name="${name}_wheel">
        <visual>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
          <material name="gray" />
        </visual>
        <collision>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
        </collision>
        <xacro:cylinder_inertial_matrix m="${wheel_m}" r="${wheel_radius}" h="${wheel_length}" />

      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="${name}_wheel" />
        <origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" />
        <axis xyz="0 1 0" />
      </joint>

      <gazebo reference="${name}_wheel">
        <material>Gazebo/Red</material>
      </gazebo>

    </xacro:macro>
    <xacro:add_wheels name="left" flag="1" />
    <xacro:add_wheels name="right" flag="-1" />

    <xacro:property name="support_wheel_radius" value="0.0075" /> 
    <xacro:property name="support_wheel_m" value="0.03" /> 


    <xacro:macro name="add_support_wheel" params="name flag" >
      <link name="${name}_wheel">
        <visual>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
        </collision>
        <xacro:sphere_inertial_matrix m="${support_wheel_m}" r="${support_wheel_radius}" />
      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
          <parent link="base_link" />
          <child link="${name}_wheel" />
          <origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" />
          <axis xyz="1 1 1" />
      </joint>
      <gazebo reference="${name}_wheel">
        <material>Gazebo/Red</material>
      </gazebo>
    </xacro:macro>

    <xacro:add_support_wheel name="front" flag="1" />
    <xacro:add_support_wheel name="back" flag="-1" />


</robot>

2、robot_camera.xacro文件

<?xml version="1.0"?>
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:property name="camera_length" value="0.01" /> 
    <xacro:property name="camera_width" value="0.025" /> 
    <xacro:property name="camera_height" value="0.025" /> 
    <xacro:property name="camera_x" value="0.08" /> 
    <xacro:property name="camera_y" value="0.0" /> 
    <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> 

    <xacro:property name="camera_m" value="0.01" /> 

    <link name="camera">
        <visual>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <xacro:Box_inertial_matrix m="${camera_m}" l="${camera_length}" w="${camera_width}" h="${camera_height}" />
    </link>

    <joint name="camera2base_link" type="fixed">
        <parent link="base_link" />
        <child link="camera" />
        <origin xyz="${camera_x} ${camera_y} ${camera_z}" />
    </joint>
    <gazebo reference="camera">
        <material>Gazebo/Blue</material>
    </gazebo>
</robot>

3、robot_lidar.xacro文件

<?xml version="1.0"?>
<robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:property name="support_length" value="0.15" /> 
    <xacro:property name="support_radius" value="0.01" /> 
    <xacro:property name="support_x" value="0.0" /> 
    <xacro:property name="support_y" value="0.0" /> 
    <xacro:property name="support_z" value="${base_link_length / 2 + support_length / 2}" /> 

    <xacro:property name="support_m" value="0.02" /> 

    <link name="support">
        <visual>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="red">
                <color rgba="0.8 0.2 0.0 0.8" />
            </material>
        </visual>

        <collision>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>

        <xacro:cylinder_inertial_matrix m="${support_m}" r="${support_radius}" h="${support_length}" />

    </link>

    <joint name="support2base_link" type="fixed">
        <parent link="base_link" />
        <child link="support" />
        <origin xyz="${support_x} ${support_y} ${support_z}" />
    </joint>

    <gazebo reference="support">
        <material>Gazebo/White</material>
    </gazebo>

    <xacro:property name="laser_length" value="0.05" /> 
    <xacro:property name="laser_radius" value="0.03" /> 
    <xacro:property name="laser_x" value="0.0" /> 
    <xacro:property name="laser_y" value="0.0" /> 
    <xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" /> 

    <xacro:property name="laser_m" value="0.1" /> 

    <link name="laser">
        <visual>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <xacro:cylinder_inertial_matrix m="${laser_m}" r="${laser_radius}" h="${laser_length}" />
    </link>

    <joint name="laser2support" type="fixed">
        <parent link="support" />
        <child link="laser" />
        <origin xyz="${laser_x} ${laser_y} ${laser_z}" />
    </joint>
    <gazebo reference="laser">
        <material>Gazebo/Black</material>
    </gazebo>
</robot>

4、camera_sensors.xacro文件

<?xml version="1.0"?>
<robot name="my_sensors" xmlns:xacro="http://wiki.ros.org/xacro">

  <gazebo reference="camera">

    <sensor type="camera" name="camera_node">
      <update_rate>30.0</update_rate> 

      <camera name="head">
        <horizontal_fov>1.3962634</horizontal_fov>
        <image>
          <width>1280</width>
          <height>720</height>
          <format>R8G8B8</format>
        </image>
        <clip>
          <near>0.02</near>
          <far>300</far>
        </clip>
        <noise>
          <type>gaussian</type>
          <mean>0.0</mean>
          <stddev>0.007</stddev>
        </noise>
      </camera>

      <plugin name="gazebo_camera" filename="libgazebo_ros_camera.so">
        <alwaysOn>true</alwaysOn>
        <updateRate>0.0</updateRate>
        <cameraName>/camera</cameraName>
        <imageTopicName>image_raw</imageTopicName>
        <cameraInfoTopicName>camera_info</cameraInfoTopicName>
        <frameName>camera</frameName>
        <hackBaseline>0.07</hackBaseline>
        <distortionK1>0.0</distortionK1>
        <distortionK2>0.0</distortionK2>
        <distortionK3>0.0</distortionK3>
        <distortionT1>0.0</distortionT1>
        <distortionT2>0.0</distortionT2>
      </plugin>
    </sensor>
  </gazebo>
</robot>

5、lidar_sensors.xacro文件

<?xml version="1.0"?>
<robot name="my_sensors" xmlns:xacro="http://wiki.ros.org/xacro">

  <gazebo reference="laser">
    <sensor type="ray" name="rplidar">
      <pose>0 0 0 0 0 0</pose>
      <visualize>true</visualize>
      <update_rate>5.5</update_rate>
      <ray>
        <scan>
          <horizontal>
            <samples>360</samples>
            <resolution>1</resolution>
            <min_angle>-3</min_angle>
            <max_angle>3</max_angle>
          </horizontal>
        </scan>
        <range>
          <min>0.10</min>
          <max>30.0</max>
          <resolution>0.01</resolution>
        </range>
        <noise>
          <type>gaussian</type>
          <mean>0.0</mean>
          <stddev>0.01</stddev>
        </noise>
      </ray>
      <plugin name="gazebo_rplidar" filename="libgazebo_ros_laser.so">
        <topicName>/scan</topicName>
        <frameName>laser</frameName>
      </plugin>
    </sensor>
  </gazebo>

</robot>

6、kinect_sensors.xacro文件

<?xml version="1.0"?>
<robot name="kinect_sensors" xmlns:xacro="http://wiki.ros.org/xacro">
    <gazebo reference="camera">  
      <sensor type="depth" name="camera">
        <always_on>true</always_on>
        <update_rate>20.0</update_rate>
        <camera>
          <horizontal_fov>${60.0*PI/180.0}</horizontal_fov>
          <image>
            <format>R8G8B8</format>
            <width>640</width>
            <height>480</height>
          </image>
          <clip>
            <near>0.05</near>
            <far>8.0</far>
          </clip>
        </camera>
        <plugin name="kinect_camera_controller" filename="libgazebo_ros_openni_kinect.so">
          <cameraName>camera</cameraName>
          <alwaysOn>true</alwaysOn>
          <updateRate>10</updateRate>
          <imageTopicName>rgb/image_raw</imageTopicName>
          <depthImageTopicName>depth/image_raw</depthImageTopicName>
          <pointCloudTopicName>depth/points</pointCloudTopicName>
          <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
          <depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopicName>
          <frameName>camera_depth</frameName>
          <baseline>0.1</baseline>
          <distortion_k1>0.0</distortion_k1>
          <distortion_k2>0.0</distortion_k2>
          <distortion_k3>0.0</distortion_k3>
          <distortion_t1>0.0</distortion_t1>
          <distortion_t2>0.0</distortion_t2>
          <pointCloudCutoff>0.4</pointCloudCutoff>
        </plugin>
      </sensor>
    </gazebo>

</robot>

7、inertia.xacro文件

<?xml version="1.0"?>
<robot name="base" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- Macro for inertia matrix -->
    <xacro:macro name="sphere_inertial_matrix" params="m r">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"
                iyy="${2*m*r*r/5}" iyz="0" 
                izz="${2*m*r*r/5}" />
        </inertial>
    </xacro:macro>

    <xacro:macro name="cylinder_inertial_matrix" params="m r h">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
                iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
                izz="${m*r*r/2}" /> 
        </inertial>
    </xacro:macro>

    <xacro:macro name="Box_inertial_matrix" params="m l w h">
       <inertial>
               <mass value="${m}" />
               <inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"
                   iyy="${m*(w*w + l*l)/12}" iyz= "0"
                   izz="${m*(w*w + h*h)/12}" />
       </inertial>
   </xacro:macro>
</robot>

8、move.xacro文件

<robot name="move" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:macro name="joint_trans" params="joint_name">
        <transmission name="${joint_name}_trans">
            <type>transmission_interface/SimpleTransmission</type>
            <joint name="${joint_name}">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
            </joint>
            <actuator name="${joint_name}_motor">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
                <mechanicalReduction>1</mechanicalReduction>
            </actuator>
        </transmission>
    </xacro:macro>


    <xacro:joint_trans joint_name="left_wheel2base_link" />
    <xacro:joint_trans joint_name="right_wheel2base_link" />


    <gazebo>
        <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">
            <rosDebugLevel>Debug</rosDebugLevel>
            <publishWheelTF>true</publishWheelTF>
            <robotNamespace>/</robotNamespace>
            <publishTf>1</publishTf>
            <publishWheelJointState>true</publishWheelJointState>
            <alwaysOn>true</alwaysOn>
            <updateRate>100.0</updateRate>
            <legacyMode>true</legacyMode>
            <leftJoint>left_wheel2base_link</leftJoint>
            <rightJoint>right_wheel2base_link</rightJoint> 
            <wheelSeparation>${base_link_radius * 2}</wheelSeparation> 
            <wheelDiameter>${wheel_radius * 2}</wheelDiameter> 
            <broadcastTF>1</broadcastTF>
            <wheelTorque>30</wheelTorque>
            <wheelAcceleration>1.8</wheelAcceleration>
            <commandTopic>cmd_vel</commandTopic> 
            <odometryFrame>odom</odometryFrame> 
            <odometryTopic>odom</odometryTopic> 
            <robotBaseFrame>base_footprint</robotBaseFrame> 
        </plugin>
    </gazebo>

</robot>

9、robot.xacro文件

<?xml version="1.0"?>
<robot name="arm" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/inertia.xacro" /> 
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/robot_base.xacro" />
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/robot_camera.xacro" />
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/robot_lidar.xacro" />
     
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/move.xacro" />
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/lidar_sensors.xacro" />
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/camera_sensors.xacro" />
    <xacro:include filename="$(find robot_sim_gazebo)/urdf/xacro/kinect_sensors.xacro" />

</robot>

三、启动模型

1、robot.launch文件

<launch>
        <!-- 设置launch文件的参数 
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>-->

    <!-- 运行gazebo仿真环境
    <launch>
      <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="worlds/mbot_sim_gazebo_navigation.world"/> 
        <arg name="paused" value="false"/>
        <arg name="use_sim_time" value="true"/>
        <arg name="gui" value="true"/>
        <arg name="headless" value="false"/>
        <arg name="debug" value="false"/>
      </include>
    </launch>--> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="worlds/mbot_sim_gazebo_navigation.world"/> 
        <arg name="paused" value="false"/>
        <arg name="use_sim_time" value="true"/>
        <arg name="gui" value="true"/>
        <arg name="headless" value="false"/>
        <arg name="debug" value="false"/>
    </include>

    <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find robot_sim_gazebo)/urdf/xacro/robot.xacro'" />

    <!--<include file="$(find gazebo_ros)/launch/empty_world.launch" />-->

    <!--<node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />-->

    <!-- 运行joint_state_publisher节点,发布机器人的关节状态-->  
    <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

    <!-- 运行robot_state_publisher节点,发布tf-->  
    <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

      <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model mrobot -param robot_description"/> 

    <node name="rviz" pkg="rviz" type="rviz" args="-d $(find robot_sim_gazebo )/config/default.rviz"/>

    <node pkg="tf2_ros" type="static_transform_publisher" name="static_transform_publisher" args="0 0 0 -1.57 0 -1.57 /camera /camera_depth" />


</launch>

2、运行launch文件

roslaunch robot_sim_gazebo robot.launch

四、移动控制

运行如下命令:

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0.5}}'

可以看到机器人开始自动移动。
或使用键盘控制命令:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

五、效果

运行后,可以观察到里程计、点云和体感数据等,效果如下:
ROS学习(30)自定义移动机器人模型gazebo仿真(激光雷达+kinect)_第1张图片
ROS学习(30)自定义移动机器人模型gazebo仿真(激光雷达+kinect)_第2张图片

你可能感兴趣的:(ROS,ROS)