- IGModel——提高基于 GNN与Attention 机制的方法在药物发现中的实用性
Jackie_AI
计算机视觉stablediffusion自然语言处理语言模型Imagen
IGModel——提高基于GNN与Attention机制的方法在药物发现中的实用性导言深度学习在药物发现(发现治疗药物)领域的应用以及传统方法面临的挑战。药物(尤其是我们将在本文中讨论的被称为抑制剂的药物)通过与在人体中发挥不良功能的蛋白质结合并改变这些蛋白质的功能来发挥治疗效果。因此,在设计药物时,必须优化这些结合的亲和力和药理特性,并准确预测蛋白质与药物之间的相互作用。近年来,人们尤其提倡使用
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- GNN会议&期刊汇总(人工智能、机器学习、深度学习、数据挖掘)
Bunny_Ben
科研方法&心得人工智能机器学习深度学习笔记神经网络数据挖掘
会议【NeurIPS】全称ConferenceonNeuralInformationProcessingSystems(神经信息处理系统大会),机器学习和计算神经科学领域的顶级学术会议,CCFA。【ICLR】全称InternationalConferenceonLearningRepresentations(国际学习表征会议),深度学习顶会。【AAAI】由人工智能促进协会AAAI(Associat
- 图神经网络实战(18)——消息传播神经网络
盼小辉丶
图神经网络从入门到项目实战pytorch深度学习图神经网络
图神经网络实战(18)——消息传播神经网络0.前言1.消息传播神经网络2.实现MPNN框架小结系列链接0.前言我们已经学习了多种图神经网络(GraphNeuralNetworks,GNN)变体,包括图卷积网络(GraphConvolutionalNetwork,GCN)、图注意力网络(GraphAttentionNetworks,GAT)和GraphSAGE等。在本节中,我们将对这些变体GNN结构
- [Scene Graph] 图神经网络的核心方法——Message Passing
风中摇曳的小萝卜
SceneGraph神经网络深度学习机器学习人工智能
GNN中的MessagePassing方法解析一、GNN中是如何实现特征学习的?深度学习方法的兴起是从计算图像处理(ComputerVision)领域开始的。以卷积神经网络(CNN)为代表的方法会从邻近的像素中获取信息。这种方式对于结构化数据(structureddata)十分有效,例如,图像和体素数据。但是,CNN的处理方式对于类似图(graph)数据则并不适用。对于一个图而言,类似图像像素的邻
- GNN的理解难点:一种不同于传统神经网络的复杂性
小桥流水---人工智能
人工智能深度学习机器学习算法神经网络人工智能深度学习
图神经网络(GNN)已经成为深度学习领域的一颗新星,它在处理图形数据方面显示出了巨大的潜力和优势。然而,许多研究者和开发者发现GNN比传统的神经网络更难以理解和掌握。本文将探讨GNN的理解难点,以及它与传统神经网络在概念和实现上的主要差异。一、图数据的复杂性首先,GNN之所以难以理解,一个重要原因在于它处理的数据结构——图。图是一种复杂的数据结构,包含节点(node)和边(edge),这些节点和边
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 金融贷款风险预测:使用图神经网络模型进行违约概率评估
从零开始学习人工智能
金融神经网络人工智能
要使用PyTorch和GNN(图神经网络)来预测金融贷款风险,并加入注意力机制,我们首先需要构建一个贷款风险预测的图数据集。然后,我们将设计一个基于注意力机制的GNN模型。以下是一个简化的代码示例,演示了如何使用PyTorch和PyTorchGeometric(一个流行的图神经网络库)来实现这一点。请注意,这只是一个起点,并且您可能需要根据您的具体需求进行调整。首先,安装必要的库:bash复制代码
- Michael Bronstein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
人工智能与算法学习
大数据算法编程语言python机器学习
如何突破基于WL测试和消息传递机制的GNN的性能瓶颈?且看几何深度学习旗手、牛津大学教授MichaelBrostein如是说。编辑丨陈彩娴来源|AI科技评论图可以方便地抽象关系和交互的复杂系统。社交网络、高能物理、化学等研究领域都涉及相互作用的对象(无论是人、粒子还是原子)。在这些场景下,图结构数据的重要性日渐凸显,相关方法取得了一系列初步成功,而一系列工业应用使得图深度学习成为机器学习方向的热门
- Michael Brostein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
人工智能学家
大数据算法编程语言python机器学习
来源:前沿科技编译:OGAI编辑:陈彩娴如何突破基于WL测试和消息传递机制的GNN的性能瓶颈?且看几何深度学习旗手、牛津大学教授MichaelBrostein如是说。图可以方便地抽象关系和交互的复杂系统。社交网络、高能物理、化学等研究领域都涉及相互作用的对象(无论是人、粒子还是原子)。在这些场景下,图结构数据的重要性日渐凸显,相关方法取得了一系列初步成功,而一系列工业应用使得图深度学习成为机器学习
- [论文精读]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
论文精读人工智能深度学习学习图论分类笔记
论文网址:https://arxiv.org/abs/2205.12465论文代码:https://github.com/Wayfear/FBNETGEN英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!目录1.省流版1.1.心得1.2.论文总结图2.论文逐段精读2.1.Abstr
- [代码复现]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
代码复现深度学习人工智能学习图论笔记nlp
仅提供ABIDE数据集复现步骤,很简单。代码已经很新了目录1.论文资料2.代码复现步骤及可能存在的问题2.1.环境配置2.2.代码运行1.论文资料(1)论文原文:[2205.12465]FBNETGEN:Task-awareGNN-basedfMRIAnalysisviaFunctionalBrainNetworkGeneration(arxiv.org)(2)论文代码:GitHub-Wayfea
- DeepMind加持的GNN框架正式开源,TensorFlow进入图神经网络时代
Python数据挖掘
pythonpython深度学习神经网络
谷歌在垃圾邮件检测、流量估计以及YouTube内容标签等环境中使用了一种强大的工具GNN(图神经网络)。11月18日,谷歌联合DeepMind对外开源TensorFlowGNN工具,助力流量预测、谣言和假新闻检测、疾病传播建模、物理模拟等领域的基础研究。11月18日,谷歌联合DeepMind发布了TensorFlowGNN(图神经网络)。目前,谷歌已经在诸如垃圾邮件检测、流量估计以及YouTube
- Google刚刚推出了图神经网络Tensorflow-GNN
新加坡内哥谈技术
神经网络tensorflow人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/在当今数字化的世界里,对象及其之间的复杂关系构成了无数的网络,例如交通网络、生产网络、知
- Datawhale组队学习GNN-task04 数据完整存储与内存的数据集类+节点预测与边预测任务实践
79f3c66c2fe7
DataWhale开源学习资料:https://github.com/datawhalechina/team-learning-nlp/tree/master/GNN6.1数据完全存于内存的数据集类学习在PyG中如何自定义一个数据完全存于内存的数据集类。InMemoryDataset基类简介根文件夹(root)raw_dirprocessed_dir传递的三个函数:transformpre_tra
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- Graph Contrastive Learning with Augmentations
tutoujiehegaosou
Graph笔记
GraphCL学习笔记Abstract提出GNN对自监督学习和pre-training较少。本文提出了GraphCL框架,用于学习图的无监督表示。设计四种类型的数据增强,在不同的settings(learningrate,batchsize,dropout参数)下,研究这四种增强对不同数据集的影响。Introduction大多数graph-level的任务场景,GNN都是在监督的情况下进行端到端的
- Task02 消息传递图神经网络
沫2021
参考链接:https://github.com/datawhalechina/team-learning-nlp/blob/master/GNN/Markdown%E7%89%88%E6%9C%AC/4-%E6%B6%88%E6%81%AF%E4%BC%A0%E9%80%92%E5%9B%BE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.md一、引言消息传递范式是一种聚
- A.关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)【一】
汀、人工智能
图计算图学习图论图神经网络人工智能
图学习图神经网络算法专栏简介:主要实现图游走模型(DeepWalk、node2vec);图神经网络算法(GCN、GAT、GraphSage),部分进阶GNN模型(UniMP标签传播、ERNIESage)模型算法等,完成项目实战专栏链接:图学习图神经网络算法专栏简介:含图算法(图游走模型、图神经网络算法等)原理+项目+代码实现+比赛前人栽树后人乘凉,本专栏提供资料:快速掌握图游走模型(DeepWal
- ECE755_gnn图神经网络(附完整工程)
_max_max
GNN神经网络人工智能深度学习fpga
ECE755_gnn图神经网络(附完整工程)ECE755课程要求任务1完成:题目要求MS1代码:仿真任务二完成题目要求MS2代码:仿真总结ECE755ECE755_sp23是加拿大渥太华大学(UniversityofOttawa)计算机工程系(SchoolofElectricalEngineeringandComputerScience)的一个研究生课程,涵盖了图神经网络(GraphNeuralN
- 《Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs》阅读笔记
斯曦巍峨
GraphLearning异构图GNN
文章概述作者指出许多流行的GNN模型在泛化到异构图上时性能都很差,为此,作者确定了一组能够帮助提升GNN在异构图上性能的设计:自嵌入和邻居嵌入分离聚合更高阶的邻居将中间层的表示组合作为最后的表示作者将这些理念应用到了自己设计的H2GCN\text{H}_{2}\text{GCN}H2GCN上,半监督结点分类任务(semi-supervisednodeclassificationtask)的实验结果
- 人工智能福利站,初识人工智能,图神经网络学习,第一课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(1)01.什么是图神经网络(GNN)?02.图神经网络与传统神经网络的区别是什么?03.图神经网络有哪些主要的应用领域?04.请
- Python GCN、GAT、MP等图神经网络学习,从入门全面概述和讲解GNN,入门到精通图神经网络
医学小达人
推荐算法人工智能图神经网络图神经网络人工智能推荐系统
1.图的分类:1.1根据边的方向性:有向图(DirectedGraph):图中的边具有方向性,表示节点之间的单向关系。例如,A指向B的边表示节点A指向节点B。无向图(UndirectedGraph):图中的边没有方向性,表示节点之间的双向关系。例如,A和B之间的边表示节点A和节点B之间存在连接关系。1.2根据边的是否具有权重:加权图(WeightedGraph):图中的边具有权重,表示节点之间的强
- Transformer在GNN的前沿综述
数据派THU
transformer深度学习人工智能
本文约4500字,建议阅读10+分钟本文介绍了Graphormer,一种基于标准Transformer架构的图表示学习方法。1介绍Transformer架构在自然语言处理和计算机视觉等领域表现出色,但在图级预测中表现不佳。为了解决这个问题,本文介绍了Graphormer,一种基于标准Transformer架构的图表示学习方法,在广泛的图表示学习任务中取得了优异成绩,特别是在OGB大规模挑战中。Gr
- 《图机器学习》-GNN 《A Single Layer of a GNN》
白色的生活
图机器学习机器学习人工智能神经网络
GNN一、ASingleLayerofaGNN二、ClassicalGNNLayer1、GCN2、GraphSAGE3、GAT三、GNNLayerinPractice四、StackingGNNLayers一、ASingleLayerofaGNN单层的神经网络包括两个部分:消息转换(Message)信息聚合(Aggregation)GNNLayer=Message+AggregationGNN\La
- 《图机器学习》-GNN Augmentation and Training
白色的生活
图机器学习机器学习人工智能算法
GNNAugmentationandTraining一、GraphAugmentationforGNNs1、FeatureAugmentation2、Structureaugmentation3、NodeNeighborhoodSampling二、GNNTrainingPipeline1、Predictionheads2、SupervisedVSUnsupervised3、LossFunction
- GNN框架优化GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs
ILL.
神经网络性能优化gpu算力
OSDI’21AbstractGNNAdvisor从GNN模型和输入图中寻找与性能相关的特征,作为优化点实现为GNN计算定制的2D工作负载管理,提升GPU利用率和性能利用GPU内存结构,根据GPU内存结构和GNN工作负载的特点协调GNN的执行为了实现自动优化,继承了一个轻量级的分析模型进行参数搜索1.Introduction目前,支持GNN训练和推理的工作可以分为两类:图处理系统,融合神经操作神经
- Neural Improvement Heuristics for Graph Combinatorial Optimization Problems
Namnan
组合优化人工智能算法
NeuralImprovementHeuristicsforGraphCombinatorialOptimizationProblemsIEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS2023摘要图神经网络(GNN)架构的最新进展和增加的计算能力已经彻底改变了组合优化(CO)领域。在所提出的模型CO的问题,神经改进(NI)模型已经特别成功。然而,
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul