- OpenMVG(EXIF、畸变、仿射特征、特征匹配)
江河地笑
C++(图形图像)算法
本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解,因此乘着过年期间对这个库进行详细的学习。目录1OpenMVG编译与简单测试1.1sfm_data.json获取1.2计算特征2OpenMVG整个流程的运行测试3OpenMVG实战3.1SVG绘制3.2解析图片的EXIF信息3.3光学畸变3.4提取图像中的仿射特征点3.5对图像进行特征匹配(K-VLD)1OpenMVG编译与简单
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 《PackNet:3D Packing for Self-Supervised Monocular Depth Estimation》论文笔记
m_buddy
#DepthEstimationPackNet
参考代码:packnet-sfm1.概述导读:这篇文章提出了一种自监督的深度估计方法,其使用视频序列与运动信息作为输入,用网络去估计深度信息/相机位姿,并用最小重构误差去约束整个训练的过程从而实现自监督。文章的创新点主要体现为:使用3D卷机作为深度编解码网络,在相机位姿的6d信息基础上对平移分量进行约束,提出了一个新的数据集DDAD(DenseDepthforAutomatedDriving)。单
- 3D Gaussian Splatting-实时辐射场渲染技术
VT LI
gpu并行编程3d高斯飞溅图形渲染论文ai
引用自:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf概述:该论文介绍了一种用于实时辐射场渲染的3D高斯点渲染技术。其基本原理是:一:首先从SfM校准的图像及其对应的稀疏点云中提取出场景信息。解析:1.SfM校准的图像是指通过StructurefromMotion(SfM
- 基于Pix4Dmapper软件的运动结构恢复SFM无人机遥感影像三维模型重建
疯狂学习GIS
前面两篇博客分别基于不同软件、不同方法,详细讲解了空间三维模型建立的过程: 博客1(https://www.jianshu.com/p/20dede2650a9):基于3DSOM的侧影轮廓方法物体空间三维模型重建。 博客2(https://www.jianshu.com/p/fa2bf99624aa):基于EinScan-S的编码结构光方法物体空间三维模型重建。 那么本次,综合以上两篇博
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- 【三维重建】运动恢复结构(SfM)
Patrick star`
算法
运动恢复结构是通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。欧式结构恢复(内参已知,外参未知)欧式结构恢复问题:已知:1、n个三维点在m张图像中的对应点的像素坐标2、相机内参求解:1、n个三维点坐标2、m个摄像机的外参数R、T通过极几何我们知道本质矩阵和基础矩阵【三维重建】对极几何-CSDN博客求得了基础矩阵F,知道相机内参,就能求得本质矩阵E核心问题就在于如何从
- 3d gaussian splatting介绍整理
蓝羽飞鸟
DeepLearning3d人工智能
3D高斯分布是用于实时辐射场渲染的3D高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。papergithub本文翻译整理自:blog:Introductionto3DGaussianSplattingDDPMs-Part2给出一些2D图片,用colmap得到稀疏(SfM)点,可重建出逼真的3D场景。3DGS的核心是光栅化技术。这类似于计算机图形学中的三角形光栅化,用于
- 三维重建(6)--多视图几何
Struart_R
三维重建人工智能三维重建计算机视觉
目录一、运动恢复问题(SfM)二、欧式结构恢复问题1、概述2、算法流程3、本质矩阵分解4、欧式结构恢复歧义三、仿射结构恢复问题1、概述2、因式分解法3、仿射结构恢复歧义四、透视结构恢复问题1、概述2、透视结构恢复歧义3、代数方法4、捆绑调整五、P3P问题六、随机采样一致性(RANSAC)一、运动恢复问题(SfM)运动恢复问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像
- 【三维重建】运动恢复结构SfM理解记录:初始化与参数估计
小白不懂就多问多学
三维重建
目录一、SfM的认识二、SfM的初始化三、SfM的实现1、投影变换矩阵2、投影过程3、参数初始估计4、最小化重投影误差注意参考文献一、SfM的认识三维重建=图像序列+SfM+MVS+…图像序列:拍摄多视图照片集SfM:能求出每个图像的参数(包括内参和外参),还有稀疏三维结构MVS:是基于SfM的输出下,进行稠密化。还有后续的曲面重建等等。三维重建:综述链接1,链接2;项目链接开源的sfm可以参考c
- 三维重建(7)--运动恢复结构SfM系统解析
Struart_R
三维重建人工智能计算机视觉三维重建三维建模
目录一、SfM系统(两视图)1、特征提取2、特征匹配3、RANSAC求解基础矩阵F4、完整的欧式结构恢复算法流程二、基于增量法的SfM系统(以OpenMVG为例)1、预处理2、图像特征点提取与匹配3、两视图重构点云4、增加新视图,多视图重构一、SfM系统(两视图)对于欧式结构恢复的两视图问题,需要获得三维场景的m张图像的像坐标作为已知条件,求解三维场景结构(即三维点坐标),m个摄像机的外参数R和T
- 最新!无需任何SFM预处理,实现精确相机姿态估计和逼真场景重建
3DCV
人工智能计算机视觉算法学习深度学习
作者:石昊|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf从图像序列中进行相机姿态估计和新视角合成的问题。以往的方法在处理大相机运动时存在困难,或者需要非常长的训练时间。为了解决这个问题,本文提出了一种新的端到端框架,利用三维高斯点云表示场景,并结合视频流中的连续性进行相机姿态估计和新视角合成。与NeRF等方法不同,本文的方法利用显式的点云表示场景,通过利用三维高斯点云的能
- OpenSfM
我愿化作一道辰光
简介OpenSfM是Mapillary公司在github上的开源项目,是封装很好的开源SfM项目之一,同时生成的结果可以快速实现可视化效果。具有较好的可拓展性。配置见github。源码剖析源码结构--bin[写好的脚本]--data[数据]--doc[说明书]--opensfm[源代码]--viewer[可视化]参考Mapillary官网paulinus作者
- 【计算机视觉】基于三维重建和点云处理的扫地机器人寻路
乐心唯帅
计算机视觉人工智能
[摘要]扫地机器人的使用已经越发普及,其中应用到了三维重建的知识。本项目旨在设计由一定数量的图像根据算法完成三维模型的建立,并利用三维数据最终得到扫地机器人的行驶路线,完成打扫机器人成功寻路的任务。本项目采用的方法是SFM-MVS、Colmap、Kinect三种建模方法进行建模,分别由组内不同成员完成,经过亲自采集一定数量的图像集,利用SFM-MVS算法获得对应的三维模型进行2D降维处理,并利用该
- 3D Guassians Splatting相关解读
我宿孤栈
#视觉相关人工智能3d算法
从已有的点云模型出发,以每个点为中心,建立可学习的高斯表达,用Splatting即抛雪球的方法进行渲染,实现高分辨率的实时渲染。1、主要思想1.引入了一种各向异性(anisotropic)的3D高斯分布作为高质量、非结构化的辐射场表达;从SFM点云出发,以每个点为中心生成3D高斯分布;各向异性指从各个方向看上去都长得不一样,即把一个点往不同相机位姿上投影的时候会投出不一样的样子。2.实现了使用GP
- 【研究】聚焦型光场相机等效多相机模型及其运动恢复结构应用
光场视觉
数码相机3d光场
摘要:聚焦型光场相机在运动恢复结构(SFM)和场景重建等领域中的作用日益显现。但是传统SFM算法因聚焦型光场相机具有特殊的结构而难以直接应用。针对这一问题提出一种完整的聚焦型光场相机等效多目相机模型。在此基础上,利用传统多目相机的SFM算法,给出了适用于聚焦型光场相机的位姿估计算法示例和点云三角化算法示例。最后,通过仿真实验和真实场景重建实验验证了本文等效多目相机模型和SFM算法的正确性,进而表明
- ParticleSfM:Exploiting Dense Point Trajectories for Localizing Moving Cameras in the Wild——论文笔记
m_buddy
#3DReconstruction论文阅读计算机视觉人工智能
参考代码:particle-sfm1.概述介绍:基于运动恢复的重建算法其前提假设是所处的是静态场景,但在实际过程中该假设可能是不成立的,这就会导致位姿估计不准确和场景重建出错。为了处理动态场景问题,文章引入视频帧间光流信息作为输入,通过帧间光流信息构建多帧之间初始逐像素传导路径,并由这些路径通过网络推理得到场景中众多路径是否为属于运动物体,同时可以根据路径分类信息得到场景中运动目标的“分割mask
- Ubuntu18.04安装GTSAM库(亲测可用)
RobotsRuning
UbuntuGTSAM
在SLAM(SimultaneousLocalizationandMapping)和SFM(StructurefromMotion)这些复杂的估计问题中,因子图算法以其高效和灵活性而脱颖而出,成为图模型领域的核心技术。GTSAM(GeorgiaTechSmoothingandMapping)库,作为因子图算法的一个杰出代表,由佐治亚理工学院的团队开发,是机器人学和计算机视觉领域里数据平滑和地图构建
- 算法学习-BM1:链表反转
xyx112
c++链表算法
算法学习BM1链表反转https://www.nowcoder.com/practice/75e878df47f24fdc9dc3e400ec6058ca?tpId=295&sfm=html&channel=nowcoder题目描述:给定一个长度为n的链表,反转该链表,输出表头。思路:1.空链表直接返回;2.两个指针,cur当前结点,pre前一个节点(初始为空);3.遍历链表,每到一个节点,断开节
- Ubuntu下COLMAP的编译与安装全攻略
梦想的理由
编译ubuntuubuntulinux运维
文章目录一、前言二、安装依赖库基本的依赖安装CeresSolver安装不需要cuda支持需要cuda支持三、编译colmap四、运行colmap五、总结一、前言在计算机视觉领域,colmap是一款功能强大的开源图像重建工具。它提供了包括SfM(StructurefromMotion)、MVS(Multi-ViewStereo)等在内的多种功能,广泛应用于三维建模、场景理解等领域。对于从事相关研究的
- 3D重建算法综述
小白学视觉
算法神经网络python计算机视觉机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。2.2双目/多目视觉双目视觉主要利用左右相机得到的两幅校正图像找到左右图片的匹配点,然后根据几何原理恢复出环境的三维信息。但该方法难点在于左右相机图片的匹配,匹配地不精确都会影响最后算法成像的效果。多目视觉采用三个或三个以上摄像机来提高匹配的精度
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】三维重建
格图素书
目标检测人工智能计算机视觉
目录前言几个高频面试题目“基于RGB-D相机的三维重建"和传统的SFM和SLAM算法有什么区别?
- 基于单片机音乐弹奏播放DS1302万年历显示及源程序
bbxyliyang
51单片机嵌入式硬件单片机
一、系统方案1、本设计采用51单片机作为主控器。2、DS1302计时显示年月日时分秒。3、按键可以弹奏以及播放音乐,内置16首音乐。二、硬件设计原理图如下:三、单片机软件设计1、首先是系统初始化/时钟显示**/voidinit_1602_ds1302(){write_sfm2_ds1302(1,1,shi);//显示时write_sfm2_ds1302(1,4,fen);//显示分write_sf
- 一起自学SLAM算法:7.6 SFM、BA和SLAM比较
机器人研究猿
一起自学SLAM算法算法人工智能机器人
连载文章,长期更新,欢迎关注:写在前面第1章-ROS入门必备知识第2章-C++编程范式第3章-OpenCV图像处理第4章-机器人传感器第5章-机器人主机第6章-机器人底盘第7章-SLAM中的数学基础
- VINS-Mono-VIO初始化 (二:SFM中的三角化方法)
Rhys___
VINS系列专栏算法线性代数矩阵自动驾驶c++
前面预积分对IMU的数据进行预处理,现在需要对视觉的信息进行处理,在VINS中视觉初始化的处理就是使用SFM,但是这里的三角化他没有用opencv给的函数,而是用自己的方法进行三角化。这里SFM的方式就是现在滑窗里面找到枢纽帧,然后枢纽帧和最后一帧进行三角化获得3D点,然后通过PNP计算滑窗中其他关键帧的位姿,同时也三角化出更多新的点,顺序是先从枢纽帧向右再向左,然后再遍历只被中间帧看到的点进行三
- OpenCV实现SfM(三):多目三维重建
看不见我呀
立体标定基础
http://blog.csdn.net/AIchipmunk/article/details/51232861版权声明:本文为博主原创文章,未经博主允许不得转载。目录(?)[+]注意:本文中的代码必须使用OpenCV3.0或以上版本进行编译,因为很多函数是3.0以后才加入的。目录:问题简化求第三个相机的变换矩阵加入更多图像代码实现测试思考下载问题简化终于有时间来填坑了,这次一口气将双目重建扩展为
- hive自定义UDF实现md5加密函数
青眼酷白龙
Hivehive
hive自定义UDF实现md5加密函数1pom.xm配置4.0.0com.itcastUDFtest1.0-SNAPSHOTorg.apache.hivehive-exec1.2.1org.apache.hadoophadoop-common2.7.4org.apache.maven.pluginsmaven-shade-plugin2.2packageshade*:*META-INF/*.SFM
- 三维重建代码实现(二)
风之旅人c
写在开头最近在学习三维重建的相关知识,打算将三维重建SFM的整个过程用代码的形式梳理一下,本章节主要实现相机标定。这里我们假定你有一定的三维重建相关的基本知识,作者在这里推荐高翔博士的《视觉SLAM十四讲:从理论到实践》,在B站上有高翔博士的讲解视频。相机标定我们首先做一个约定:二维坐标点:,三维点坐标。则他们的坐标对应的齐次形式是:,三维点坐标。两者之间的关系是:其中是一个比例参数,是相机外参,
- A 3D Morphable Model learnt from 10,000 faces
深蓝蓝蓝蓝蓝
三套人脸数据模型:BFM,Facewarehouse,SFM,LSFM本文提到的是LSFM,提供了9663个不同身份人的3DMM模型和对应人的年龄,性别和种族背景48%男性,52%女性,82%白人,9%亚裔,5%混血,3%黑人,1%其他构建了一套全自动构建3DMM的流程:1.使用渲染图自动提取landmark2.在landmark的引导将原始3D模板形变已匹配输入的3D数据3.构建一个全局PCA,
- bundle linux 安装,Bundler 在linux下的安装
买手联盟CE橙子
bundlelinux安装
一、什么是BundlerBundler是一个采用C和C++开发的称为sfm(struct-from-motion)的系统,它能够利用无序的图片集合(例如来自网络的图片)重建出3D的模型。最早的版本被用在PhotoTourism的项目上。Bundler的输入是一些图像、图像特征以及图像匹配信息,输出则是一个根据这些图像反应的场景的3D重建模型,伴有少量识别得到的相机以及场景几何信息。系统借用一个由L
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$