众所周知的爱因斯坦场方程
R a b − 1 2 R g a b = 8 π T a b R_{ab} - \frac{1}{2}Rg_{ab} = 8\pi T_{ab} Rab−21Rgab=8πTab
是个高度非线性的二阶偏微分方程组,求解一般是很困难的。但在某些限定条件下,方程可以得到简化。
所谓弱场条件,是指时空度规 g a b g_{ab} gab接近闵氏度规 η a b \eta_{ab} ηab. 用式子表示就是
g a b = η a b + γ a b g_{ab} = \eta_{ab} + \gamma_{ab} gab=ηab+γab
其中 γ μ ν \gamma_{\mu\nu} γμν的2阶项小到可以忽略。为满足 g a b g b c = δ a c g^{ab}g_{bc} = \delta^a{}_c gabgbc=δac,我们需要令
g a b = η a b − γ a b g^{ab} = \eta^{ab} - \gamma^{ab} gab=ηab−γab
设 ∂ a \partial_a ∂a是与 η a b \eta_{ab} ηab适配的导数算符,则Christoffel符号的表达式
Γ c a b = 1 2 g c d ( ∂ a g b d + ∂ b g a d − ∂ d g a b ) \Gamma^c{}_{ab} = \frac{1}{2}g^{cd}(\partial_ag_{bd} + \partial_bg_{ad} - \partial_dg_{ab}) Γcab=21gcd(∂agbd+∂bgad−∂dgab)
在上述条件下就对应于
Γ c a b = 1 2 η c d ( ∂ a γ b d + ∂ b γ a d − ∂ d γ a b ) \Gamma^c{}_{ab} = \frac{1}{2}\eta^{cd}(\partial_a\gamma_{bd} + \partial_b\gamma_{ad} - \partial_d\gamma_{ab}) Γcab=21ηcd(∂aγbd+∂bγad−∂dγab)
下面计算上述条件下黎曼张量的表达式
R a b c d = − 2 ∂ [ a Γ d b ] c + 2 Γ e c [ a Γ d b ] e R_{abc}{}^d = -2\partial_{[a}\Gamma^d{}_{b]c} + 2\Gamma^e{}_{c[a}\Gamma^d{}_{b]e} Rabcd=−2∂[aΓdb]c+2Γec[aΓdb]e
首先 Γ e c [ a Γ d b ] e \Gamma^e{}_{c[a}\Gamma^d{}_{b]e} Γec[aΓdb]e是二阶项,因此可以忽略。而 − 2 ∂ a Γ d b c = − η d e ( ∂ a ∂ b γ c e + ∂ c ∂ a γ b e − ∂ e ∂ a γ b c ) -2\partial_{a}\Gamma^d{}_{bc} = -\eta^{de}(\partial_a\partial_b\gamma_{ce} + \partial_c\partial_a\gamma_{be} - \partial_e\partial_a\gamma_{bc}) −2∂aΓdbc=−ηde(∂a∂bγce+∂c∂aγbe−∂e∂aγbc),取反称后第一项为0,于是就有线性黎曼张量
R a b c d = ∂ d ∂ [ a γ b ] c − ∂ c ∂ [ a γ b ] d R_{abc}{}^d = \partial^d\partial_{[a}\gamma_{b]c} - \partial_c\partial_{[a}\gamma_{b]}{}^d Rabcd=∂d∂[aγb]c−∂c∂[aγb]d
其中 ∂ d ≡ η d e ∂ e \partial^d \equiv \eta^{de}\partial_e ∂d≡ηde∂e. 而里线性奇张量就表示为
R a c = ∂ b ∂ [ a γ b ] c − ∂ c ∂ [ a γ b ] b = 1 2 ∂ b ∂ a γ b c − 1 2 ∂ b ∂ b γ a c − 1 2 ∂ c ∂ a γ b b + 1 2 ∂ c ∂ b γ a b = ∂ b ∂ ( a γ c ) b − 1 2 ∂ b ∂ b γ a c − 1 2 ∂ a ∂ c γ \begin{aligned} R_{ac} &= \partial^b\partial_{[a}\gamma_{b]c} - \partial_c\partial_{[a}\gamma_{b]}{}^b \\ &= \frac{1}{2}\partial^b\partial_a\gamma_{bc} - \frac{1}{2}\partial^b\partial_b\gamma_{ac} - \frac{1}{2}\partial_c\partial_a\gamma_b{}^b + \frac{1}{2}\partial_c\partial_b\gamma_a{}^b \\ & = \partial^b\partial_{(a}\gamma_{c)b} - \frac{1}{2}\partial^b\partial_b\gamma_{ac} - \frac{1}{2}\partial_a\partial_c\gamma \end{aligned} Rac=∂b∂[aγb]c−∂c∂[aγb]b=21∂b∂aγbc−21∂b∂bγac−21∂c∂aγbb+21∂c∂bγab=∂b∂(aγc)b−21∂b∂bγac−21∂a∂cγ
其中最后一步用到 ∂ b γ a b = ∂ b γ a b \partial_b\gamma_a{}^b = \partial^b\gamma_{ab} ∂bγab=∂bγab以及 γ a b \gamma_{ab} γab的对称性, γ ≡ γ a a \gamma \equiv \gamma_a{}^a γ≡γaa. 此时标量曲率
R = 1 2 ∂ b ∂ a γ a b + 1 2 ∂ b ∂ a γ a b − 1 2 ∂ b ∂ b γ − 1 2 ∂ a ∂ a γ = ∂ a ∂ b γ a b − ∂ a ∂ a γ \begin{aligned} R &= \frac{1}{2}\partial^b\partial_a\gamma^a{}_b + \frac{1}{2}\partial^b\partial^a\gamma_{ab} - \frac{1}{2}\partial^b\partial_b\gamma - \frac{1}{2}\partial_a\partial^a\gamma \\ &= \partial^a\partial^b\gamma_{ab} - \partial^a\partial_a\gamma \end{aligned} R=21∂b∂aγab+21∂b∂aγab−21∂b∂bγ−21∂a∂aγ=∂a∂bγab−∂a∂aγ
于是我们得到线性爱因斯坦场方程
∂ c ∂ ( a γ b ) c − 1 2 ∂ c ∂ c γ a b − 1 2 ∂ a ∂ b γ − 1 2 η a b ( ∂ c ∂ d γ c d − ∂ c ∂ c γ ) = 8 π T a b \partial^c\partial_{(a}\gamma_{b)c} - \frac{1}{2}\partial^c\partial_c\gamma_{ab} - \frac{1}{2}\partial_a\partial_b\gamma - \frac{1}{2}\eta_{ab}(\partial^c\partial^d\gamma_{cd} - \partial^c\partial_c\gamma) = 8\pi T_{ab} ∂c∂(aγb)c−21∂c∂cγab−21∂a∂bγ−21ηab(∂c∂dγcd−∂c∂cγ)=8πTab
令 γ ˉ a b = γ a b − 1 2 η a b γ \bar\gamma_{ab} = \gamma_{ab} - \frac{1}{2}\eta_{ab}\gamma γˉab=γab−21ηabγ,上式还可以继续化简为
8 π T a b = ∂ c ∂ ( a γ ˉ b ) c + 1 2 ∂ c ∂ ( a η b ) c γ − 1 2 ∂ c ∂ c γ ˉ a b − 1 4 ∂ c ∂ c η a b γ − 1 2 ∂ a ∂ b γ − 1 2 η a b ( ∂ c ∂ d γ ˉ c d + 1 2 ∂ c ∂ d η c d γ − ∂ c ∂ c γ ) = ∂ c ∂ ( a γ ˉ b ) c − 1 2 ∂ c ∂ c γ ˉ a b − 1 2 η a b ∂ c ∂ d γ ˉ c d \begin{aligned} 8\pi T_{ab} &= \partial^c\partial_{(a}\bar\gamma_{b)c} + \textcolor{blue}{\frac{1}{2}\partial^c\partial_{(a}\eta_{b)c}\gamma} - \frac{1}{2}\partial^c\partial_c\bar\gamma_{ab} - \textcolor{red}{\frac{1}{4}\partial^c\partial_c\eta_{ab}\gamma} - \textcolor{blue}{\frac{1}{2}\partial_a\partial_b\gamma} - \frac{1}{2}\eta_{ab}(\partial^c\partial^d\bar\gamma_{cd} + \textcolor{red}{\frac{1}{2}\partial^c\partial^d\eta_{cd}\gamma - \partial^c\partial_c\gamma}) \\ &= \partial^c\partial_{(a}\bar\gamma_{b)c} - \frac{1}{2}\partial^c\partial_c\bar\gamma_{ab} - \frac{1}{2}\eta_{ab}\partial^c\partial^d\bar\gamma_{cd} \end{aligned} 8πTab=∂c∂(aγˉb)c+21∂c∂(aηb)cγ−21∂c∂cγˉab−41∂c∂cηabγ−21∂a∂bγ−21ηab(∂c∂dγˉcd+21∂c∂dηcdγ−∂c∂cγ)=∂c∂(aγˉb)c−21∂c∂cγˉab−21ηab∂c∂dγˉcd
用 ∂ b \partial^b ∂b作用到上式,得
8 π ∂ b T a b = 1 2 ∂ c ∂ a ∂ b γ ˉ b c + 1 2 ∂ c ∂ b ∂ b γ ˉ a c − 1 2 ∂ b ∂ c ∂ c γ ˉ a b − 1 2 ∂ a ∂ c ∂ d γ ˉ c d = 0 8\pi\partial^bT_{ab} =\frac{1}{2}\partial^c\partial_a\partial^b\bar\gamma_{bc} + \frac{1}{2}\partial^c\partial_b\partial^b\bar\gamma_{ac} - \frac{1}{2}\partial^b\partial^c\partial_c\bar\gamma_{ab} - \frac{1}{2}\partial_a\partial^c\partial^d\bar\gamma_{cd} = 0 8π∂bTab=21∂c∂a∂bγˉbc+21∂c∂b∂bγˉac−21∂b∂c∂cγˉab−21∂a∂c∂dγˉcd=0
这表明线性引力论中能动张量的散度为零,从而保证了各种守恒律。
令 γ ~ a b ≡ γ a b + 2 ∂ ( a ξ b ) \tilde\gamma_{ab} \equiv \gamma_{ab} + 2\partial_{(a}\xi_{b)} γ~ab≡γab+2∂(aξb),因为
∂ d ∂ a ∂ ( b ξ c ) − ∂ d ∂ b ∂ ( a ξ c ) − ∂ c ∂ a ∂ ( b ξ e ) η e d + ∂ c ∂ b ∂ ( a ξ e ) η e d = 0 \partial^d\partial_a\partial_{(b}\xi_{c)} - \partial^d\partial_b\partial_{(a}\xi_{c)} - \partial_c\partial_a\partial_{(b}\xi_{e)}\eta^{ed} + \partial_c\partial_b\partial_{(a}\xi_{e)}\eta^{ed} = 0 ∂d∂a∂(bξc)−∂d∂b∂(aξc)−∂c∂a∂(bξe)ηed+∂c∂b∂(aξe)ηed=0
容易发现 γ ~ a b \tilde\gamma_{ab} γ~ab与 γ a b \gamma_{ab} γab对应相同的线性黎曼曲率张量,因此若 γ a b \gamma_{ab} γab是线性爱因斯坦场方程的解,则 γ ~ a b \tilde\gamma_{ab} γ~ab也是。这被称作线性引力论的规范变换。现在我们做这样一种规范变换,使得 ∂ b γ ˉ a b = 0 \partial^b\bar\gamma_{ab} = 0 ∂bγˉab=0. 如果 γ ˉ a b \bar\gamma_{ab} γˉab不满足此条件,由
∂ b γ ˉ ~ a b = ∂ b γ ~ a b − 1 2 η a b γ ~ = ∂ b γ a b + ∂ b ∂ a ξ b + ∂ b ∂ b ξ a − 1 2 ∂ b η a b η c d ( γ c d + ∂ c ξ d + ∂ d ξ c ) = ∂ b γ ˉ a b + ∂ b ∂ b ξ a \begin{aligned} \partial^b\tilde{\bar\gamma}_{ab} &= \partial^b\tilde\gamma_{ab} - \frac{1}{2}\eta_{ab}\tilde\gamma \\ &= \partial^b\gamma_{ab} + \textcolor{red}{\partial^b\partial_a\xi_b} + \partial^b\partial_b\xi_a - \frac{1}{2}\partial^b\eta_{ab}\eta^{cd}(\gamma_{cd} + \textcolor{red}{\partial_c\xi_d + \partial_d\xi_c}) \\ &= \partial^b\bar\gamma_{ab} + \partial^b\partial_b\xi_a \end{aligned} ∂bγˉ~ab=∂bγ~ab−21ηabγ~=∂bγab+∂b∂aξb+∂b∂bξa−21∂bηabηcd(γcd+∂cξd+∂dξc)=∂bγˉab+∂b∂bξa
可知我们只需找一个 ξ \xi ξ满足
− ∂ b γ ˉ a b = ∂ b ∂ b ξ a -\partial^b\bar\gamma_{ab} = \partial^b\partial_b\xi_a −∂bγˉab=∂b∂bξa
即可使 ∂ b γ ˉ ~ a b = 0 \partial^b\tilde{\bar\gamma}_{ab} = 0 ∂bγˉ~ab=0. 而给定 γ ˉ a b \bar\gamma_{ab} γˉab后这个方程是非齐次波动方程,它的解总是存在的。此时线性爱因斯坦方程就进一步简化为
∂ c ∂ c γ ˉ a b = − 16 π T a b \partial^c\partial_c\bar\gamma_{ab} = -16\pi T_{ab} ∂c∂cγˉab=−16πTab
所谓低速条件,具体来说是指:
在上述条件下,线性爱因斯坦方程就简化为
∇ 2 γ ˉ 00 = − 16 π ρ ∇ 2 γ ˉ 0 i = 0 ∇ 2 γ ˉ i j = 0 \begin{aligned} \nabla^2\bar\gamma_{00} &= -16\pi\rho \\ \nabla^2\bar\gamma_{0i} &= 0 \\ \nabla^2\bar\gamma_{ij} &= 0 \end{aligned} ∇2γˉ00∇2γˉ0i∇2γˉij=−16πρ=0=0
后两式的解为常数,可以借助规范变换把这常数变为0,因此 γ ˉ μ ν \bar\gamma_{\mu\nu} γˉμν的唯一非零分量为 γ ˉ 00 \bar\gamma_{00} γˉ00. 今令
ϕ = − 1 4 γ ˉ 00 \phi = -\frac{1}{4}\bar\gamma_{00} ϕ=−41γˉ00
上述方程就成为牛顿引力论中的泊松方程
∇ 2 ϕ = 4 π ρ \nabla^2\phi = 4\pi\rho ∇2ϕ=4πρ
上述结论也可以用张量等式表达为
γ ˉ a b = γ ˉ 00 ( d t ) a ( d t ) b = − 4 ϕ ( d t ) a ( d t ) b \bar\gamma_{ab} = \bar\gamma_{00}(dt)_a(dt)_b = -4\phi(dt)_a(dt)_b γˉab=γˉ00(dt)a(dt)b=−4ϕ(dt)a(dt)b
于是
γ ˉ = η a b γ ˉ a b = γ ˉ 00 η a b ( d t ) a ( d t ) b = − γ ˉ 00 = 4 ϕ \bar\gamma = \eta^{ab}\bar\gamma_{ab} = \bar\gamma_{00}\eta^{ab}(dt)_a(dt)_b = -\bar\gamma_{00} = 4\phi γˉ=ηabγˉab=γˉ00ηab(dt)a(dt)b=−γˉ00=4ϕ
而
γ = η a b γ a b = η a b γ ˉ a b + 1 2 η a b η a b γ = γ ˉ + 2 γ \gamma = \eta^{ab}\gamma_{ab} = \eta^{ab}\bar\gamma_{ab} + \frac{1}{2}\eta^{ab}\eta_{ab}\gamma = \bar\gamma + 2\gamma γ=ηabγab=ηabγˉab+21ηabηabγ=γˉ+2γ
故 γ = − γ ˉ \gamma = -\bar\gamma γ=−γˉ,于是我们求得
γ a b = γ ˉ a b − 1 2 η a b γ ˉ = − ϕ [ 4 ( d t ) a ( d t ) b + 2 η a b ] \gamma_{ab} = \bar\gamma_{ab} - \frac{1}{2}\eta_{ab}\bar\gamma = -\phi[4(dt)_a(dt)_b + 2\eta_{ab}] γab=γˉab−21ηabγˉ=−ϕ[4(dt)a(dt)b+2ηab]
如果曲线切矢沿线平移,则称该曲线为测地线,即
T b ∇ a T a = 0 T^b\nabla_aT^a = 0 Tb∇aTa=0
该方程称为测地线方程。选取坐标系后,上述方程可以表达为
T b ( ∂ b T a + Γ a b c T c ) = 0 T^b(\partial_bT^a + \Gamma^a{}_{bc}T^c) = 0 Tb(∂bTa+ΓabcTc)=0
写成分量形式就是
d T μ d t + Γ μ ν σ T ν T σ = 0 \frac{dT^\mu}{dt} + \Gamma^\mu{}_{\nu\sigma}T^\nu T^\sigma = 0 dtdTμ+ΓμνσTνTσ=0
设 x = x ( t ) x = x(t) x=x(t)是上述曲线的参数式,则上式又可以改写为
d 2 x μ d t 2 + Γ μ ν σ d x ν d t d x σ d t = 0 \frac{d^2x^\mu}{dt^2} + \Gamma^\mu{}_{\nu\sigma}\frac{dx^\nu}{dt}\frac{dx^\sigma}{dt} = 0 dt2d2xμ+Γμνσdtdxνdtdxσ=0
此方程在低速条件下近似为
d 2 x μ d t 2 = − Γ μ 00 \frac{d^2x^\mu}{dt^2} = -\Gamma^\mu{}_{00} dt2d2xμ=−Γμ00
注意到 γ 00 = − 2 ϕ , γ j 0 = γ ˉ j 0 + 1 2 η j 0 γ = 0 \gamma_{00} = -2\phi, ~ \gamma_{j0} = \bar\gamma_{j0} + \frac{1}{2}\eta_{j0}\gamma = 0 γ00=−2ϕ, γj0=γˉj0+21ηj0γ=0,考虑 Γ μ 00 \Gamma^\mu{}_{00} Γμ00的分量,就有
Γ 0 00 = 1 2 η 00 ( γ 00 , 0 + γ 00 , 0 − γ 00 , 0 ) = − 1 2 ∂ γ 00 ∂ t ≃ 0 Γ i 00 = 1 2 η i j ( γ j 0 , 0 + γ 0 j , 0 − γ 00 , j ) ≃ − 1 2 η i j γ 00 , j = − 1 2 ∂ γ 00 ∂ x i \Gamma^0{}_{00} = \frac{1}{2}\eta^{00}(\gamma_{00,0} + \gamma_{00,0} - \gamma_{00,0}) = -\frac{1}{2}\frac{\partial\gamma_{00}}{\partial t} \simeq 0 \\ \Gamma^i{}_{00} = \frac{1}{2}\eta^{ij}(\gamma_{j0,0} + \gamma_{0j,0} - \gamma_{00,j}) \simeq -\frac{1}{2}\eta^{ij}\gamma_{00,j} = -\frac{1}{2}\frac{\partial\gamma_{00}}{\partial x^i} Γ000=21η00(γ00,0+γ00,0−γ00,0)=−21∂t∂γ00≃0Γi00=21ηij(γj0,0+γ0j,0−γ00,j)≃−21ηijγ00,j=−21∂xi∂γ00
于是测地线方程近似为
a ⃗ = d 2 x i d t 2 = − ∂ ϕ ∂ x i = − ∇ ⃗ ϕ \vec a = \frac{d^2x^i}{dt^2} = -\frac{\partial\phi}{\partial x^i} = -\vec\nabla\phi a=dt2d2xi=−∂xi∂ϕ=−∇ϕ
这正是牛顿引力论中只受引力的质点的运动方程。
由 g 00 = η 00 + γ 00 = − ( 1 + 2 ϕ ) g_{00} = \eta_{00} + \gamma_{00} = -(1 + 2\phi) g00=η00+γ00=−(1+2ϕ)得
ϕ = − 1 2 ( 1 + g 00 ) \phi = -\frac{1}{2}(1 + g_{00}) ϕ=−21(1+g00)
这反映了牛顿近似下度规分量 g 00 g_{00} g00同牛顿引力势的密切关系。